458 research outputs found

    The metallicity of galactic winds

    Get PDF
    The abundance evolution of galaxies depends critically on the balance between the mixing of metals in their interstellar medium (ISM), the inflow of new gas and the outflow of enriched gas. We study these processes in gas columns perpendicular to a galactic disc using sub-parsec resolution simulations that track stellar ejecta with the flash code. We model a simplified ISM stirred and enriched by supernovae and their progenitors. We vary the density distribution of the gas column and integrate our results over an exponential disc to predict wind and ISM enrichment properties for disc galaxies. We find that winds from more massive galaxies are hotter and more highly enriched, in stark contrast to that which is often assumed in galaxy formation models. We use these findings in a simple model of galactic enrichment evolution, in which the metallicity of forming galaxies is the result of accretion of nearly pristine gas and outflow of enriched gas along an equilibrium sequence. We compare these predictions to the observed mass–metallicity relation, and demonstrate how the galaxy's gas fraction is a key controlling parameter. This explains the observed flattening of the mass–metallicity relation at higher stellar masses

    Tidal Disruption of Protoclusters in Giant Molecular Clouds

    Full text link
    We study the collapse of protoclusters within a giant molecular cloud (GMC) to determine the conditions under which collapse is significantly disrupted. Motivated by observations of star forming regions which exhibit flattened cloud structures, this study considers collapsing protoclusters with disk geometries. The collapse of a 10^3 Msun protocluster initially a distance of 2-10 pc from a 10^3 - 10^6 Msun point mass is numerically calculated. Simulations with zero initial relative velocity between the two are completed as well as simulations with relative velocities consistent with those observed in GMCs. The results allow us to define the conditions under which it is safe to assume protocluster collapse proceeds as if in isolation. For instance, we find the collapse of a 10^3 Msun protocluster will be significantly disrupted if it is within 2-4 pc of a 10^4 Msun point mass. Thus, the collapse of a 10^3 Msun protocluster can be considered to proceed as if in isolation if it is more than ~ 4 pc away from a 10^4 Msun compact object. In addition, in no portion of the sampled parameter space does the gravitational interaction between the protocluster disk and the massive particle significantly disperse the disk into the background GMC. We discuss the distribution of clusters of young stellar objects within the Perseus and Mon R2 star forming regions, which are consistent with the results of our simulations and the limitations of our results in gas dominated regions such as the Orion cloud.Comment: 12 pages, 6 figures, Accepted for publication in Ap

    Impact of the application of redecision methods in executive coaching workshops on psychological wellbeing : a quantitative evaluation of effectiveness

    Get PDF
    Previous research has found that participants in redecision marathons experience increased personal growth and improvements in psychological well-being (McNeel, 1982; Noriega-Gayol, 1997; Widdowson & Rosseau, 2014). In this article, the authors conducted a quantitative analysis based on the use of the Ryff Scales of Psychological Wellbeing to determine whether participants (n=49) at an executive coaching redecision marathon would experience an increase in psychological well-being. The findings show statistically significant improvements in psychological well-being overall, and specifically within the sub-scales of autonomy, environmental mastery, personal growth and self-acceptance, suggesting that redecision- based workshops are effective for improving subjective psychological well-being

    The Thermal Memory of Reionization History

    Get PDF
    The recent measurement by WMAP of a large electron scattering optical depth tau_e = 0.17 +- 0.04 is consistent with a simple model of reionization in which the intergalactic medium (IGM) is ionized at redshift z ~ 15, and remains highly ionized thereafter. Here, we show that existing measurements of the IGM temperature from the Lyman-alpha forest at z ~ 2 - 4 rule out this ``vanilla'' model. Under reasonable assumptions about the ionizing spectrum, as long as the universe is reionized before z = 10, and remains highly ionized thereafter, the IGM reaches an asymptotic thermal state which is too cold compared to observations. To simultaneously satisfy the CMB and forest constraints, the reionization history must be complex: reionization begins early at z >~ 15, but there must have been significant (order unity) changes in fractions of neutral hydrogen and/or helium at 6 < z < 10, and/or singly ionized helium at 4 < z < 10. We describe a physically motivated reionization model that satisfies all current observations. We also explore the impact of a stochastic reionization history and show that a late epoch of (HeII --> HeIII) reionization induces a significant scatter in the IGM temperature, but the scatter diminishes with time quickly. Finally, we provide an analytic formula for the thermal asymptote, and discuss possible additional heating mechanisms that might evade our constraints.Comment: 10 pages, submitted to ApJ, new references, additional discussion on earlier work and partial HeII reionizatio

    The Evolution of Optical Depth in the Ly-alpha Forest: Evidence Against Reionization at z~6

    Get PDF
    We examine the evolution of the IGM Ly-alpha optical depth distribution using the transmitted flux probability distribution function (PDF) in a sample of 63 QSOs spanning absorption redshifts 1.7 < z < 5.8. The data are compared to two theoretical optical depth distributions: a model distribution based on the density distribution of Miralda-Escude et al. (2000) (MHR00), and a lognormal distribution. We assume a uniform UV background and an isothermal IGM for the MHR00 model, as has been done in previous works. Under these assumptions, the MHR00 model produces poor fits to the observed flux PDFs at redshifts where the optical depth distribution is well sampled, unless large continuum corrections are applied. However, the lognormal optical depth distribution fits the data at all redshifts with only minor continuum adjustments. We use a simple parametrization for the evolution of the lognormal parameters to calculate the expected mean transmitted flux at z > 5.4. The lognormal optical depth distribution predicts the observed Ly-alpha and Ly-beta effective optical depths at z > 5.7 while simultaneously fitting the mean transmitted flux down to z = 1.6. If the evolution of the lognormal distribution at z < 5 reflects a slowly-evolving density field, temperature, and UV background, then no sudden change in the IGM at z ~ 6 due to late reionization appears necessary. We have used the lognormal optical depth distribution without any assumption about the underlying density field. If the MHR00 density distribution is correct, then a non-uniform UV background and/or IGM temperature may be required to produce the correct flux PDF. We find that an inverse temperature-density relation greatly improves the PDF fits, but with a large scatter in the equation of state index. [Abridged]Comment: 45 pages, 16 figures, submitted to Ap

    Radio Afterglows of Gamma-Ray Bursts and Hypernovae at High Redshift, and their Potential for 21-cm Absorption Studies

    Full text link
    We investigate the radio afterglows of gamma-ray bursts (GRBs) and hypernovae (HNe) at high redshifts and quantify their detectability, as well as their potential usefulness for 21 cm absorption line studies of the intergalactic medium (IGM) and intervening structures. We examine several sets of source and environment model parameters that are physically plausible at high redshifts. The radio afterglows of GRBs would be detectable out to z ~ 30, while the energetic HNe could be detectable out to z ~ 20 even by the current Very Large Array (VLA). We find that the 21 cm absorption line due to the diffuse neutral IGM is difficult to detect even by the proposed Square Kilometer Array (SKA), except for highly energetic sources. We also find that the 21 cm line due to collapsed gas clouds with high optical depth may be detected on rare occasions.Comment: 36 pages, 12 figures, 1 table, accepted for publication in Ap

    Sample variance and Lyman α forest transmission statistics

    Get PDF
    We compare the observed probability distribution function (PDF) of the transmission in the H I Lyman α forest, measured from the Ultraviolet and Visual Echelle Spectrograph (UVES) ‘Large Programme’ sample at redshifts z = [2, 2.5, 3], to results from the GIMIC cosmological simulations. Our measured values for the mean transmission and its PDF are in good agreement with published results. Errors on statistics measured from high-resolution data are typically estimated using bootstrap or jackknife resampling techniques after splitting the spectra into chunks. We demonstrate that these methods tend to underestimate the sample variance unless the chunk size is much larger than is commonly the case. We therefore estimate the sample variance from the simulations. We conclude that observed and simulated transmission statistics are in good agreement; in particular, we do not require the temperature–density relation to be ‘inverted’

    Hydrogen Clouds before Reionization: a Lognormal Model Approach

    Full text link
    We study the baryonic gas clouds (the IGM) in the universe before the reionization with the lognormal model which is shown to be dynamcially legitimate in describing the fluctuation evolution in quasilinear as well as nonlinear regimes in recent years. The probability distribution function of the mass field in the LN model is long tailed and so plays an important role in rare events, such as the formation of the first generation of baryonic objects. We calculate density and velocity distributions of the IGM at very high spatial resolutions, and simulate the distributions at resolution of 0.15 kpc from z=7 to 15 in the LCDM cosmological model. We performed a statistics of the hydrogen clouds including column densities, clumping factors, sizes, masses, and spatial number density etc. One of our goals is to identify which hydrogen clouds are going to collapse. By inspecting the mass density profile and the velocity profile of clouds, we found that the velocity outflow significantly postpones the collapsing process in less massive clouds, in spite of their masses are larger than the Jeans mass. Consequently, only massive (> 10^5 M_sun) clouds can form objects at higher redshift, and less massive (10^4-10^5) collapsed objects are formed later. For example, although the mass fraction in clouds with sizes larger than the Jeans length is already larger than 1 at z=15, there is only a tiny fraction of mass (10^{-8}) in the clouds which are collapsed at that time. If all the ionizing photons, and the 10^{-2} metallicity observed at low redshift are produced by the first 1% mass of collapsed baryonic clouds, the majority of those first generation objects would not happen until z=10.Comment: Paper in AAStex, 12 figure

    The Reionization History at High Redshifts I: Physical Models and New Constraints from CMB Polarization

    Get PDF
    The recent discovery of a high optical depth tau to Thomson scattering from the WMAP data implies that significant reionization took place at redshifts z~15. This discovery has important implications for the sources of reionization, and allows, for the first time, constraints to be placed on physical reionization scenarios out to redshift z~20. Using a new suite of semi-analytic reionization models, we show that the high value of tau requires a surprisingly high efficiency epsilon of the first generation of UV sources for injecting ionizing photons into the intergalactic medium. We find that no simple reionization model can be consistent with the combination of the WMAP result with data from the z<6.5 universe. Satisfying both constraints requires either of the following: (i) H_2 molecules form efficiently at z~20, survive feedback processes, and allow UV sources in halos with virial temperatures below Tvir=10^4 K to contribute substantially to reionization, or (ii) the efficiency epsilon in halos with Tvir>10^4K decreased by a factor of ~ 30 between (z~20) and (z~6). We discuss the relevant physical issues to produce either scenario, and argue that both options are viable, and allowed by current data. In detailed models of the reionization history, we find that the evolution of the ionized fractions in the two scenarios have distinctive features that Planck can distinguish at 3 sigma significance. At the high WMAP value for tau, Planck will also be able to provide tight statistical constraints on reionization model parameters, and elucidate much of the physics at the end of the Dark Ages. The sources responsible for the high optical depth discovered by WMAP should be directly detectable out to z~15 by the James Webb Space Telescope.Comment: cosmetic changes to figures; text unchange

    An accurate tool for the fast generation of dark matter halo catalogues

    Get PDF
    We present a new parallel implementation of the PINpointing Orbit Crossing-Collapsed HIerarchical Objects (PINOCCHIO) algorithm, a quick tool, based on Lagrangian Perturbation Theory, for the hierarchical build-up of dark matter (DM) haloes in cosmological volumes. To assess its ability to predict halo correlations on large scales, we compare its results with those of an N-body simulation of a 3 h−1 Gpc box sampled with 20483 particles taken from the MICE suite, matching the same seeds for the initial conditions. Thanks to the Fastest Fourier Transforms in the West (FFTW) libraries and to the relatively simple design, the code shows very good scaling properties. The CPU time required by PINOCCHIO is a tiny fraction (∌1/2000) of that required by the MICE simulation. Varying some of PINOCCHIO numerical parameters allows one to produce a universal mass function that lies in the range allowed by published fits, although it underestimates the MICE mass function of Friends-of-Friends (FoF) haloes in the high-mass tail. We compare the matter–halo and the halo–halo power spectra with those of the MICE simulation and find that these two-point statistics are well recovered on large scales. In particular, when catalogues are matched in number density, agreement within 10 per cent is achieved for the halo power spectrum. At scales k > 0.1 h Mpc−1, the inaccuracy of the Zel’dovich approximation in locating halo positions causes an underestimate of the power spectrum that can be modelled as a Gaussian factor with a damping scale of d = 3 h−1 Mpc at z = 0, decreasing at higher redshift. Finally, a remarkable match is obtained for the reduced halo bispectrum, showing a good description of non-linear halo bias. Our results demonstrate the potential of PINOCCHIO as an accurate and flexible tool for generating large ensembles of mock galaxy surveys, with interesting applications for the analysis of large galaxy redshift surveys
    • 

    corecore