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ABSTRACT

The abundance evolution of galaxies depends critically on the balance between the mixing of
metals in their interstellar medium (ISM), the inflow of new gas and the outflow of enriched
gas. We study these processes in gas columns perpendicular to a galactic disc using sub-parsec
resolution simulations that track stellar ejecta with the FLAsH code. We model a simplified ISM
stirred and enriched by supernovae and their progenitors. We vary the density distribution of
the gas column and integrate our results over an exponential disc to predict wind and ISM
enrichment properties for disc galaxies. We find that winds from more massive galaxies are
hotter and more highly enriched, in stark contrast to that which is often assumed in galaxy
formation models. We use these findings in a simple model of galactic enrichment evolution,
in which the metallicity of forming galaxies is the result of accretion of nearly pristine gas
and outflow of enriched gas along an equilibrium sequence. We compare these predictions to
the observed mass—metallicity relation, and demonstrate how the galaxy’s gas fraction is a key
controlling parameter. This explains the observed flattening of the mass—metallicity relation
at higher stellar masses.
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1 INTRODUCTION

Supernovae (SNe) are a key ingredient in current models of galaxy
formation. In these models, the energy associated with core-collapse
‘Type II' SNe is invoked to drive a galactic wind. In small
galaxies, such winds eject a large fraction of the baryons (Lar-
son 1974; Rees & Ostriker 1977; White & Rees 1978; Benson et al.
2003) thereby regulating their star formation (Schaye et al. 2010).
Such drastic ‘feedback’ is required by the models to explain the in-
efficiency with which gas is converted to stars as inferred from the
baryon census of the Universe (Balogh et al. 2001; Tumlinson et al.
2013), the stellar mass of galaxies of a given halo mass (Behroozi,
Conroy & Wechsler 2010; Guo et al. 2010) and the presence of
elements synthesized in stars (‘metals’) in the intergalactic medium
(IGM; Theuns et al. 2002; Springel & Hernquist 2003; Aguirre et al.
2005; Cen, Nagamine & Ostriker 2005). The injected energy is also
thought to control the turbulence in the interstellar medium (ISM)
of galaxies (McKee & Ostriker 1977; Elmegreen & Scalo 2004).
It is challenging to perform numerical simulations of SN explo-
sions to verify whether the physics we have ascribed to them does
indeed imply the multitude of observed galaxy properties they are
believed to be responsible for, because of the daunting dynamic
range between the sub-parsec scale of a single SN bubble to the
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>10 kpc scale of the whole galaxy, and because the overlap of SN
explosions can dramatically alter the net impact of energy injection
(Mori, Ferrara & Madau 2002).

Hydrostatic nuclear burning in the massive progenitor stars and
explosive nucleosynthesis during the Type II SN phase are re-
sponsible for producing many of the heavy elements detected in
stars and gas (e.g. Woosley, Arnett & Clayton 1973), in particular
elements containing a multiple number of helium () nuclei. The
accumulation of galactic metals in stars and gas therefore allows a
form of ‘archaeology’, making it possible to infer the history of star
formation and SN activity from the metal content of a galaxy. Type
II SNe produce r-process elements, enriching the ISM of a galaxy,
with some additional help (especially for iron) from Type Ia SNe
and asymptotic giant branch stars (e.g. Burbidge et al. 1957; see e.g.
Wiersma et al. 2009b for a recent implementation in cosmological
simulations). By combining hydrodynamic models of the accretion
and outflow of gas from galaxies it should be possible to track the
evolution of metals in some detail, as done by e.g. Pilkington et al.
(2012) and Brook et al. (2012) where cosmological simulations had
individual galaxies re-simulated (zoom simulations) to track the
metal distribution in dwarfs. However, because of the need to sim-
ulate a whole galaxy, these simulations were limited to a resolution
of 25000 M, per resolution element (gas particle), in contrast the
simulations described here better this dramatically to a mass resolu-
tion of 0.35 M, per cell. Such high resolution is critical, releasing
us from the need to model feedback ‘subgrid’.
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Observationally, metals are detected in stellar absorption lines
(e.g. Worthey 1994), nebular lines (e.g. Tremonti et al. 2004), in
galactic winds (Heckman, Armus & Miley 1990; Heckman et al.
2000; Pettini et al. 2001; Martin et al. 2013) and in the IGM
(Cowie et al. 1995; Schaye et al. 2003). Whilst we are far from
having a complete inventory of the cosmic metals (e.g. Fukugita,
Hogan & Peebles 1998) due to the selection bias of the tracers and
some unobserved sinks such as coronal gas, molecular clouds and
low-mass stars, we are starting to build constraints on the hydrody-
namic processes that transfer metals between the different phases
(Finlator & Davé 2008; Peeples & Shankar 2011; Davé, Finlator
& Oppenheimer 2012). Because SNe are both the source of energy
for driving a galactic wind and the origin of (some of) the met-
als observed in winds, studying the metal distribution of stars, gas
and galactic winds could provide valuable information on how SNe
drive winds.

Metals enhance the cooling of gas due to their numerous elec-
tronic energy transitions, particularly in the range from 10° to 10’ K
(Sutherland & Dopita 1993; Wiersma, Schaye & Smith 2009a). In
cosmological simulations of galaxy formation, feedback from star
formation strives to balance cooling and accretion of gas (Schaye
etal. 2010), i.e. when gas cooling is enhanced, a galaxy will increase
its star formation rate and hence the rate at which SNe inject en-
ergy to restore equilibrium. Since the presence of metals enhances
cooling, obtaining the correct metallicity of halo and ISM is crucial
for producing the right amount of star formation in a halo of given
mass.

Excitingly, simulations of small galaxies at high redshift are
starting to be able to follow in detail how SN explosions stir and en-
rich the ISM, as well as regulate their star formation by powering a
wind, all in a cosmological setting (Wise et al. 2012). Unfortunately
itis not yet possible to continue such calculations to the present day,
nor investigate how SNe feedback behave in more massive galaxies,
necessitating ‘subgrid’ models of feedback (e.g. Springel & Hern-
quist 2003; Schaye et al. 2010). To bridge the gap between detailed
simulations of SNe in a turbulent ISM, in which the calculation
resolves the transition of SNe from thermally driven to momentum
driven, and such subgrid models, we performed grid simulations of
a patch of galactic disc in Creasey, Theuns & Bower (2013, here-
after Paper I). In particular we investigated the relation between the
star formation rate, the disc properties and the strength of the galac-
tic wind. We used the simulation results to make a simple analytic
model of how the wind of a galaxy depends on its disc.

In this paper we extend these simulations to follow the highly
enriched SN ejecta, using a Chabrier initial mass function (IMF)
tracking the metal enrichment and mixing of the different phases,
and the subsequent loss of metals into the galactic wind. The paper
is organized as follows. In Section 2 we describe the extension to the
methodology of Paper I to include the tracking of metal production.
In Section 3 we explore the parameter space of disc surface density
and potential and define a statistic, 8z, to encapsulate the metal mass
loading. In Section 4 we relate this back to the mass—metallicity
relation and then in Section 5 we summarize and conclude.

2 METHODOLOGY

In this section we describe the set of simulations that we use to
analyse the metal ejection from galactic discs. As these are an ex-
tension of the simulations in Paper I we begin with a brief overview
of that simulation set-up in Section 2.1 before describing the ad-
dition of SN ejecta in Section 2.2 and their metal composition in
Section 2.3. One process absent from Paper I was the inclusion of
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stellar winds, for which we include a prescription in Section 2.4,
but we do not find that these affect the results greatly.

2.1 Modelling a supernova-driven galactic wind

We model a tall column of gas with long (z) axis perpendicular
to the disc, with the centre of the disc at z = 0. We assume out-
flow boundary conditions at the top and bottom of the column, and
periodic boundary conditions in x and y, and neglect galactic ro-
tation. The equations of hydrodynamics are solved using FLASH3
(Fryxell et al. 2000), a parallel, block structured, uniform time
step, adaptive mesh refinement (AMR) code. Integration in space
and time are both performed at second order, using a piecewise-
parabolic reconstruction in cells. Because of the extremely turbulent
nature of the ISM in our simulations, we find that FLASH attempts to
refine (i.e. to use the highest resolution allowed) almost everywhere
within our simulation volume. Therefore we disable the aMR capa-
bility of FLASH and run it at a constant refinement level, i.e. using a
fixed grid. To mitigate the overhead of the guard-cell calculations
we increase our block size to 323 cells per block.
The gas is assumed to be monoatomic with equation of state:

p = — Dpu, (D

where y = 5/3. For our primary set of simulations gas cools at a
rate dictated by a cooling function A that depends on temperature
as

. —An?, T =T,
pu = 2
0, T <T,

where we in addition assume pure hydrogen gas so that the num-
ber density n = p/m,, and A = 1072 ergcm?®s~!, however, we
also investigate the effect of a more realistic (and metal-dependent)
cooling function. Cooling is truncated below T, = 10* K to prevent
collapse into molecular clouds (which would be unresolved in our
simulations). Consequently we only follow the warm (~10* K) and
hot (~10° K) phases of the ISM, which form a bi-modal distribution
due to the fast cooling time of gas at intermediate temperatures in
pressure equilibrium.

In Paper I we explored simulations which assumed the more re-
alistic cooling function of Sutherland & Dopita (1993) but found
our results to be surprisingly insensitive to the detailed temperature
dependence of A. Essentially, when cooling was efficient, the cool-
ing time was so short that its detailed dependence on temperature is
mostly irrelevant for the dynamics of the simulations, i.e. the nor-
malization of the cooling function was important for the transition
between the phases but not the phases themselves. Our motivation
for repeating such a simplified cooling function is to be able to dis-
tinguish features in the temperature distribution of the gas that are
due to cooling, versus those that are a consequence of SN heating
and gas outflow, however, in this work there may be an additional
complication due to the inhomogeneous metal distribution, and as
such we also perform several simulations with the metal-dependent
cooling rates.

We model gravity of the disc due to stars, gas and dark matter,
by imposing a time-independent gravitational potential ¢, which is
the solution of
V2 = 4nG L, 3)

e
where p is the gas density at the start of the simulation and f; is the
initial gas fraction, calculated for each grid cell. We note that the
time-independent approximation is only valid as long as both the
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mass of the simulation remains close to the initial mass and that no
structures develop with mass above the Jeans mass (at temperature
Ty). Since the simulation begins in hydrostatic equilibrium at 7= T
the Jeans mass is that of the disc, and thus the latter condition is
automatically satisfied. For the former condition we require that the
simulations are performed for a sufficiently short time that the mass
does not evolve, and we have explicitly verified that the relative
mass loss in our simulations is (0.427939) per cent, over the time
frame considered. We note that for the real ISM the peaks in the
gas distribution reach sufficient densities that molecular cooling
becomes important, taking them to even lower temperatures and
smaller Jeans masses (i.e. they are molecular clouds), so self-gravity
does become important again on these scales. Unfortunately we do
not resolve such small scales in our simulations, indeed even with
a cooling function for the cold gas it seems that simulations at
this resolution are unable to cool to molecular temperatures (see
e.g. Gent et al. 2013). The small-scale density structures in our
simulations are thus driven by cooling and turbulence rather than
gravity.

We further assume the disc makes stars at a rate set by the
Kennicutt—Schmidt (KS; Kennicutt 1998) relation for which the
surface density rate of star formation is related to the gas surface
density by

. )
3, =25x107* (7*‘4

1.4
_ -2
Mo pc*z) Mo yr~"kpe @

As the simulation progresses in time, we keep the surface density
rate of star formation equal to its initial value — and hence also the
imposed star formation rate remains constant in time. This is a valid
approximation since our simulations are evolved over a time much
shorter than the gas depletion time-scale.

We translate the star formation rate into a core-collapse SN rate
assuming each 100 M, of stars formed yields €90 SN e.! We further
assume that the star formation rate is proportional to the local initial
density, i.e. the probability per unit volume that a SN explodes is
proportional to both the star formation surface density and the gas
density,’

p(t =0)

g

E[p, dV di] = =, dv dr. 3)
Simulations similar in spirit have been performed by Slyz et al.
(2005), Joung & Mac Low (2006), Hill et al. (2012) and Gent et al.
(2013). In Paper I we modelled a SN explosion by injecting 10°! erg
of thermal energy at the location of the explosion. In the current
paper we have improved on this as described below. As initial
conditions we assume that the gas is in hydrostatic equilibrium,
with uniform temperature T = T, = 10* K.

In Paper I we showed that the action of SNe changes the initial
gas distribution on a short time-scale of ~10 Myr into a turbu-
lent ISM with large range in temperature and density, in order of
magnitude pressure equilibrium. Occasionally several SNe will ex-
plode by chance in close proximity in rapid succession, leading
to a locally significantly overpressurised ISM. Such high-pressure

! For reference, for a Chabrier (2003) stellar IMF composed of stars with
masses between 0.1 and 100 M@, €100 = 1.8 assuming those in the range
[6, 100] M) undergo core collapse.

2 We do not assume that SNe explode at density peaks, even though the
progenitor stars may have formed there. Our motivation for this is that the
star may have drifted out of it natal molecular cloud — or that that cloud has
been destroyed by say by radiation — in the ~30 Myr between the formation
of the star and its final explosion as a SN.
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bubbles expand away from the galactic plane accelerating as they
convert thermal energy into kinetic energy. As a result, expansion
speed increases proportional to height above the plane, resembling
a rarefaction wave. The ‘galactic wind’ is the time-averaged result
of many such waves. As the rarefaction wave punches through the
disc it envelopes some of the cooler disc material dragging it along,
increasing the mass flux of the wind above of that of just gas heated
by the SNe. We characterized this ‘mass loading’ by

B=—", (©6)

i.e. the winds mass flux, MW, measured by the flux of material
escaping the computational column through its top and bottom face,
in units of the star formation rate. Running a suite of simulations in
which we varied X and f;, Paper I determined that the mass loading
depends on total surface density X, gas surface density X, and gas
fraction f, approximately as

) —1.154+0.12 f 0.1640.14
B=063+049)( — 2t £
10M@ pc? 0.1

~1.1540.12 ~1£0.14

_ z fe

—99+77) [ — " LS )
10M@ pc—2 0.1

where in the latter we have alternatively parameterized in terms
of the total (gas and stellar) surface density ¥ rather than the gas
surface density X, that we use in Section 3.

2.2 Supernova ejecta

In Paper I we modelled SNe explosions simply by increasing the
pressure in the vicinity of the explosion by

ESN ( 1 r2)
———5exp|l —=—= ). 8)
(2rr2)*? 2r?

Here, Esy = 107! erg is the bulk kinetic energy released by a single
SN, thermalized by shocking into the ISM, and r is the distance
from the centre of the SN. The sharpness of the pressure spike is
set by r, which we took to be ry = 2 pc, a compromise between
resolution (i.e. not smearing the SN over too large a volume) and
allowing for the limitations of the hydrodynamics solver (by not
placing the energy in just one cell). Given the numerical resolution
of the simulations, this width is so small that the SN is still in the
energy-driven phase, provided the density n < 77 cm™ (p < 1.3
x 10?2 g cm™3; see also Paper I), so that the simulations model the
transition from a thermally driven shell (Sedov—Taylor explosion)
to a momentum driven shell (‘snowplough’ phase).

We have improved the modelling of SNe by including SNe ejecta,
which we treat as an additional fluid, p = p, + p., where p,, is the
original (pristine) gas and p. is the gas injected by SNe. Initially p.
is set to zero everywhere and is increased by each SN by

MSN 1 r2
Ape(r) = 7(27-[,«2)3/2 exp (_§¥> , ©)

S

Apr)y=( -1

where Mgy = 10M is the total mass added. This value
corresponds to a progenitor stellar mass of ~12 M (Woosley &
Weaver 1995), chosen to be representative of a Chabrier IMF where
core collapse occurs for stars in the range [6, 100] M.

Notably this sets a (maximum) specific energy for the remnant
which was absent from the simulations of Paper I. In those simula-
tions the SNe could explode in arbitrarily sparse environments, and
there would be a (very small) tail of gas at T > 10° K. In the current
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simulations the SNe energy inject gas at a maximum temperature
of

_ umyAp
T kg Ape
E
= (y - DEEN
BMsn
E M !
~ 24 x 10PK — SN ) (10)
105terg \ 10Mg

The FLasH code will advect the ejecta along with the original gas
allowing us to examine enrichment.

2.3 Cooling and the metal composition of ejecta

The specific choice of 10M( for the mass of the SN ejecta may
at first appear crucial to the subsequent metallicity evolution of
the ISM, as this sets the quantity of metals that are introduced per
event. The hydrodynamics of our simulations, however, are only
weakly dependent on this mass because the evolution of the remnant
is primarily driven by the energy of the SN, via the temperature
in equation (10). Therefore to reduce the number of simulations
needed we keep our ejecta mass fixed and simply assume that their
metallicity varies with the yield, i.e.

Mz sx
Msx

100€00 M
y ( 100 @) , (11)
Mg

Zej =

where to be consistent with Paper I we use €100 = 1 SN per 100 M
of stars formed, and the yield y refers to the mass of oxygen released
into the ISM per 1 M, of star formation. This analysis could be
repeated for other elements. However, for other elements (partic-
ularly iron) the departure from instantaneous recycling due to the
importance of long-lived stars on the returned fraction will make
the approximations progressively poorer (e.g. Schmidt 1963; Tins-
ley 1980).

We will take as fiducial value a yield of y = 0.02. Theoretically
y is probably only known to within a factor of ~2 (Woosley &
Weaver 1995; Finlator & Davé 2008, hereafter FD08). Therefore
where possible we quote in fractions of y to reduce this uncertainty.
In order to retain the scale-free nature of the calculation this means
that we must also choose a cooling function that is independent
of metallicity, and for our primary cooling function we continue
using the function of Paper I (equation 2). This makes the specific
value of the solar metallicity Z) is only of interest for reference
purposes in these calculations, and we used the value Z = 0.0165
(Asplund, Grevesse & Sauval 2005). Given the values in the
previous paragraphs this is around 8 per cent of the ejecta metal-
licity (i.e. the Sun has formed from diluted material). We are also
making the assumption of chemically identical Type II SN, in real-
ity the ejecta of progenitor stars that differ in initial mass will have
different abundance patterns.

In order to explore the sensitivity to metallicity, however, we
additionally include a set of simulations with the metal-dependent
cooling function of Sutherland & Dopita (1993), which enhances
the rate of cooling around 10°K (see e.g. Wiersma et al. 2009a).
This breaks the scale-free nature of our simulations, i.e. the initial
metallicity of simulation volume becomes important. To bound the
parameter space we have included simulations where the initial
metallicity is uniform, with values O (pristine), 0.1Z¢g and Zg,.
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Over the short time-scales (20 Myr) of these simulations, an ISM
at solar metallicity contains a significantly higher density of metals
than will be injected via SNe.

2.4 Stellar winds

We ran a number of simulations that include the winds from mas-
sive progenitor stars, in addition to the energy injected by SNe. We
consider these to occur at the same sites as the SNe, and act uni-
formly over a time of 10 Myr. They can thus be considered either to
issue from the progenitor stars of the SNe or of the OB associations
in which the SNe occur.

The prescription for injecting stellar winds is the introduction of
thermal and kinetic energy, in a similar way to the instantaneous
energy injection for the SNe. The mass, momentum and energy
source due to the precursor of a SN are

dlop = & ex _lﬁ (12)
Plos = amaypn P\ 7252 )

) Eog 1r?

Plos = (v — I)W €xp (‘5;) ) (13)
o] r POB 1 Vz

9 _r L 14
ot (Po) op s 8mr xp ( 2r2 14

where we have normalized the rates such that the rate of mass
injection is Mog, the rate of thermal energy injection Eop and the
rate of (absolute) momentum injection Pog. Our fiducial values for
these rates are

Mog = 0.1 Mg Myr ', (15)
Eop = 10° ergMyr ™, (16)
Pog = 920kms ™' Mg Myr ', (17)

where the momentum injection corresponds to a kinetic energy
injection rate of approximately %P(%B M&; ~ 8.5 x 10* erg Myr !
(close to that of Castor, Abbott & Klein 1975), though this will
to some extent depend on the local environment. Over the 10 Myr
over which the wind is assumed to act, it will have released an
additional Egy in thermal energy and almost the same again in
mechanical energy. We have intentionally not chosen conservative
values for these energy injection rates in order to make the effect(s)
of winds more apparent in our simulations. The high implied wind
velocity (POB / MOB) is due to the addition of the radiation driv-
ing of the winds (see also Murray, Quataert & Thompson 2005),
i.e. the massive stars release a large fraction of energy as radiation
which couples to more than just the mass in the wind (e.g. Hop-
kins, Quataert & Murray 2011), avoiding a full radiative transfer
calculation on the mesh (although such calculations are becoming
possible; see e.g. Rosdahl et al. 2013).

3 METAL MIXING AND THE RATE OF METAL
EJECTION

In this section we describe the evolution of metallicity in our
simulations. We present the distribution of metallicity within the
ISM in terms of the different phases and discuss the effects of our
parameter choices. We then move on to looking at the outflowing
metals that escape from the galactic disc and the dependency of this
on the disc properties. Finally, we discuss the origin of the correla-
tion between thermalization and metal mass loading from the disc.
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Figure 1. Slice in the x—z direction through the simulation volume at 15 Myr perpendicular to the disc; the disc mid-plane is at z = 0. Panels from left to
right, depict gas density, temperature and metallicity, respectively. The disc is stirred by many generations of SNe but remains mostly intact: it is the cold and
dense band of gas near z = 0. The disc gas is punctured by young SNe remnants, which appears as low-density, hot and highly enriched bubbles. Previous
generations of SNe have launched a wind, which can be seen as the tenuous enriched gas at a range of temperatures undergoing turbulent mixing, outflowing

both below and above of the disc.

We will refer to all the gas in the computational volume (height
|z| < 500 pc) as the ‘interstellar medium’, whereas the gas that
exits the volume through the top and bottom faces of the column
as the ‘wind’. This definition of the ISM approximately covers the
volume that encloses the neutral material in our own Milky Way
(for an overview of disc components see e.g. Holmberg & Flynn
2004). The majority of the gas by mass at low |z| remains warm (7'
~ 10* K) and dense (p ~ 1072*23 g cm~?), and we will refer to this
as the ‘disc’; above the disc is the launch region of the wind.

3.1 The metallicity of the ISM

We begin with an illustrative slice through a simulation volume
of width 800 pc at a time’ of 15 Myr for a disc with gas surface
density of £, = 11.6 My pc~2 and gas fraction f, = 0.1, see Fig. 1.
At the mid-plane, z =0, we see the disrupted disc, where the initially
pristine gas has been stirred and enriched by several generations of
SNe. In a few regions individual recent SN remnants are discernible,
where they stand out as noticeably hot and sparse highly enriched
bubbles. Above and below the disc is the launch region of the tur-
bulent hot wind (see Paper I) with higher mean metallicity than the
disc. Comparing the panels reveals a correlation between temper-
ature and metallicity, and an anticorrelation between density and
metallicity, which we will discuss further in Section 3.4.

In Fig. 2 we take a closer look at the ISM by studying the phase
space in metallicity versus density and temperature at a snapshot of
the fiducial simulation at 10 Myr. The hot, sparse phase (7 > 10° K,
p < 1072 g cm™?) has a significantly higher median metallicity

3 We showed in Paper I that these simulations enter a quasi-steady state
within (at most) 10 Myr, therefore, the choice of time subsequent to this
is relatively unimportant (ignoring the exact spatial location of individual
turbulent features).

than the warm dense phase, reaching values close to 10 times solar,
with a very large scatter. Its mass-weighted metallicity is higher
than the volume-weighted one, meaning that metals tend to be
locked-up in overdense clouds. In terms of total mass in metals,
the warm phase dominates due to its much greater mass of gas.
Our reference value of 8 per cent for solar metallicity as a fraction
of the ejecta metallicity lies at the lower range of metallicities for
the hot phase but is significantly higher than the metallicities of the
warm phase. Of course the metallicity of the warm phase is not
static, as it is being steadily enriched by successive generations of
SN, and after several Gyr we would expect the cooler material to
be sufficiently enriched to form higher metallicity stars. The gas
with temperature below 10*K is due to adiabatic expansion, in
the turbulent ISM the compression and expansion combined with
cooling in the compressed phase allows the gas to scatter below
10* K.

In contrast to the ISM, the metallicity of the unbound hot phase is
approximately time independent, as the injected metals can escape
from the disc and that gas is not continually enriched by succes-
sive generations of stars.* In Fig. 3 we restrict our attention to the
outflowing material that leaves the computational volume at the top
or bottom of the simulated column. This gas is dominated by the hot,
low-density, high-metallicity phase, indeed there is no gas with den-
sity above 1072* gcm™ or relative metallicity below ~107%° Z,;.
Denser gas is entrained ISM, which is at lower metallicity and is
considerably cooler. As discussed in Paper I, such entrainment of
dense gas in the wind is crucial to obtain the high values of the
mass loading, 8 given in equation (6), required by models of galaxy

4Some of this gas may cool and fall-back on to the disc, to be expelled
once more, but this cannot occur in our simulations as they have outflow
boundary conditions.
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Figure 2. Density versus metallicity (left-hand panels) and temperature versus metallicity (right-hand panels) phase-space diagrams of the ISM for the
simulation shown in Fig. 1; top panels are shaded by volume enclosed by each phase (percentage enclosed is indicated by the colour bar), whilst the lower
panels are shaded by the fraction of metals in each phase. The vertical feature at 10* K is the base of the cooling function, and the red dashed line indicates solar
metallicity assuming a yield of y = 0.02 (see equation 11 for details). Most of the metals lie in the warm dense phase (T ~ 10*K, p ~ 10720-10"23 gecm™3),
but the hot phase has a higher average metallicity; with abundance increasing smoothly with decreasing density or increasing temperature. The scatter in
metallicity is large, ~1 dex, in all phases. The semblance of a reflection symmetry between the left- and right-hand panels is due to the (approximate) pressure
equilibrium of the ISM, i.e. density is the inverse of temperature, within an order of magnitude. Gas below T = 10* K arises due to adiabatic expansion.

formation. The nature of our enrichment mechanism entails that
the outflowing gas from galactic discs will be mostly of signifi-
cantly higher metallicity than the average gas phase metallicities
of the ISM, because it is the hot SN material that drives the wind.
Unfortunately, as this gas is rather hot and of low column density it
is hard to observe directly, and it may be easier to derive constraints
from the X-ray coronae of haloes (e.g. Crain et al. 2010). There is
also the complication that this gas will quickly mix with material
in the circumgalactic medium (CGM) to form a lower metallicity
blend.

3.2 Dependence on disc parameters

In Paper I we demonstrated that higher gas surface density discs that,
according to the KS law of equation (4), have higher star formation
rates, have a higher temperature outflow and consequently lower
mass loading, 8 oc £ '1°*012, primarily because such denser discs
have both a stronger gravitational potential and a higher cooling
rate. Consequently, to escape from this disc the outflow needs to be
both hotter and at lower density. We expect this to carry through to
these simulations that include the ejecta, and also that there will be
a corresponding trend in metallicity, where the outflows in simula-
tions with higher surface densities entrain less of the surrounding
gas and are therefore both hotter and more metal rich. In Fig. 4 we
probe this by comparing the ISM at a given time for two different
gas surface density discs. We can indeed see that the peak of the dis-
tribution of the hot phase for the higher surface density simulation
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lies at a temperature and metallicity nearly an order of magnitude
higher than that for the lower surface density simulation.

We now turn our attention to the time evolution of the ISM. In
Paper I we saw how the stochastic mass ejection from the discs
could be averaged over a large number of events to estimate a mean
outflow rate for a given idealized disc. We attempted to measure
this by combining the net mass loss from several snapshots in time
and performing a linear fit with some delay time, such that the slope
of the mass loss would indicate the outflow rate. In Section 3.3 we
will attempt the corresponding analysis, but in terms of the metal
ejection rate, and for this reason we investigate the time evolution
for a single simulation.

Using normalized quantities, we plot in Fig. 5 the time evolution
of

() the total radiative cooling rate in units of the mean injection
rate of SN energy, i.e. the volume integral of equation (2), divided
by the energy injection rate of SNe, €90 EsnM, /(100Mp);

(ii) the fraction of total gas mass remaining in the computational
volume;

(iii) the porosity, P = —log (fwarm), Where fiam is the volume
fraction of warm gas (T < 2 x 10* K);

(iv) the surface density of gas ejected;

(v) the surface density of metals ejected from the simulation
volume for the simulation in Fig. 1.

As noted in Paper I, the normalized cooling rate fluctuates wildly
and is highly correlated with the individual SN events. Shortly after
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Figure 3. As for Fig. 2 but only for the material being ejected from the disc, and outflowing the computational volume at height |z| > 500 pc. Warm dense
gas (10% K, p ~ 1072623 gcm~3) is entrained by the hot tenuous (1037 K, ~10726-28 g cm~3) outflowing wind, and has a metallicity typically 1 dex lower.

each SN event (~10000 yr) the blast wave ceases to be adiabatic
and suffers heavy radiative losses as it runs into dense patches of
gas. The normalized cooling rate can reach values higher than the
mean energy injection rate following some SN episodes, although
the median value is much lower at ~0.4. After a period of ~2 Myr
the porosity of the ISM has converged to a value of P ~ —0.5 (fyarm
~0.3), and after ~5 Myr, an outflow of mass and metals starts, with
mass loss and metal mass loss proceeding at a nearly constant rate.
Over the simulation time the total mass of gas and the scale height
of the disc do not evolve appreciably.

In order to understand the effects of metal-dependent cooling
we compare this fiducial simulation to three simulations with a
metal-dependent cooling function (Sutherland & Dopita 1993) in
Fig. 6, using initial metallicities 0, 0.1Z¢ and Z¢. As expected,
the effects of cooling are highest for the run with initially solar
abundance, and lowest in that with pristine gas. We note that the
fiducial case (cooling function from equation 2) lies between the
Sutherland and Dopita cooling curves of pristine and solar for 3 x
10* < T < 10° K. The effects of increased cooling are also evident
in the amount of gas ejected per unit area. The run with initially
pristine gas, for which cooling is least important, has higher mass
loading than the run with initially solar abundance gas, for which
cooling is most important.” The ejection rates of the intermediate
initial metallicity simulation (at 0.1 Z ) are comparable to those of
the fiducial cooling function.

> Whilst this paper was in preparation, the EAGLE team (Schaye et al. 2014)
also independently suggested a metallicity-dependent ejection mass loading
for cosmological simulations.

The metal ejection rates of these simulations are a little more
complicated. The values of B87/y for the fiducial, pristine, 0.1 solar
and solar simulations are 8.1, 11.9, 13.2 and 34.9 per cent, respec-
tively. The solar (highest) metallicity simulation has the highest
metal ejection rate, primarily because the ISM gas is already so en-
riched that the majority of metals ejected are from the ISM, rather
than the newly synthesized metals. After ignoring the effects of
the initial gas metallicity (i.e. excluding the average metallicity of
the ISM) these figures become 8.1, 11.9, 8.1 and 9.8 per cent, re-
spectively. The lower metallicity simulations all have rather similar
metal ejection rates, with the fiducial cooling curve having a lower
metal ejection rate than the pristine 0.1 Z¢, case. This suggests that
there is not a strong trend of metal ejection rate with initial ISM
metallicity, i.e. the lowest cooling rate simulation (pristine gas with
metal-dependent cooling) lies between the fiducial and intermediate
metal ejection curves, although we would caution that at this level
the ordering may depend on the SN positions (these simulations are
a ‘best case’ comparison in that they have the same random seed
for SN locations) and averaging over all configurations can adjust
the rates. Similarly this ordering also does not suggest a trend with
metallicity, except for the high-metallicity ISM when the metallic-
ity of the outflow is dominated by the initial ISM metallicity rather
than by recently injected metals.

In Fig. 7 we show the horizontally averaged mass-weighted
metallicity and different heights in the disc for the fiducial pa-
rameters. The initially pristine gas gives way to the enriched
gas after just a few Myr, and the metals are ejected from the
simulation volume. Occasionally (for SNe high above the mid-
plane) the individual ejecta can be discerned. After 20 Myr has
elapsed the mass-weighted metallicity of the disc is ~107>Zq
whilst near the edge of the simulation volume it is around 10™! Z.
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Figure 4. Dependence of the ISM temperature-metallicity phases on the
gas surface density of the disc, comparing discs with gas and star formation
surface densities of Ty = 92M@ pe=2, %, = 1.4 x 107! M kpe =2 yr !
(bottom panel) to a disc with considerably lower gas density and star forma-
tionrate, £y =7Mp pc 2, %, =38x1073 Mg kpc 2 yr71 (top panel).
The bottom disc with the higher star formation rate has a considerably hotter
outflow, which is also considerably more metal enriched.

There is, however, a correlation between metallicity and velocity
and so taking averages at a given height underestimates the wind
metallicity, and for unbiased estimates of the wind metallicity in
Section 3.3 we use the integrated material ejected.

Varying the properties of the disc does not change the qualitative
behaviour of the ISM nor of the outflow. As in Paper I we fit a linear
relation to the mass and metal mass outflows as a function of time
once the wind has started, to characterize its mass and metal mass
loading. We discuss how these quantities depend on disc properties
next.

3.3 Outflow dependencies

In analogy with the mass loading B of the wind (equation 6), we
define the quantity 87 as the ratio of the metal mass flux (Mw,z)
over the star formation rate (M,),
MW,Z

Bz = [T (18)
as measured from the slopes of the delayed linear fits for the time
evolution (i.e. Fig. 5) for each simulation. In Fig. 8 we explore how
Bz depends on gas fraction f,, and total surface density ¥ = X, /f;.
Both g and B; decrease with increasing gas fraction, and for a
given gas fraction, with increasing surface density. This can be
understood from the fact that a higher surface density disc exerts a
larger gravitational pull on the gas, and it also has a smaller scale
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Figure 5. The time evolution of the simulation shown in Fig. 1. Cyan line
is the cooling rate of the simulation volume as a fraction of the mean SN
heating rate; black line is the fraction of gas remaining in the simulation
volume; green line is the porosity normalized as 0.2P + 0.5; dark blue line
is the surface density of gas ejected from the disc in units of 0.1 M pc2;
red line is the ejected surface density of metals, in units of 0.002 M, pc?
Finally, the magenta line is the disc’s scale height, in units of its initial value
divided by 10. The cooling rate fluctuates wildly, with peaks associated with
SN events. After a short time, t ~ 2 Myr, the porosity P reaches a steady
state, and shortly afterwards (1 ~ 5 Myr) a steady outflow of mass and metals
starts up. The total amount of mass in the simulation, and the disc’s scale
height, remains nearly constant.
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Normalised quantity (see caption)

Figure 6. The time evolution of the porosity (green line), surface density
ejection (dark blue line), metal surface density ejection (red line), disc scale
height (magenta line) and mass remaining (black line) using the normaliza-
tions from Fig. 5 (we exclude instantaneous cooling for clarity) for the same
simulation, along with simulations using with the metal-dependent cooling
function of Sutherland & Dopita (1993) with three different initial gas metal-
licities. Dotted line is initially pristine zero-metallicity gas, dot—dashed line
is 0.1Z) and dashed line is Z .

height which increases the cooling rate of the gas. Similarly higher
gas fractions also increase the cooling rate, and so in both cases gas
that does manage to escape from a dense disc therefore needs to
be hotter, and hence such winds have a smaller mass loading. To
a large extent the disc surface density can be used as a proxy for
galaxy mass, and so we expect higher mass galaxies to have hotter
winds with lower mass loading.
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Figure 7. Mean metallicity as a function of height and time for the simula-
tion in Fig. 1. Grey-scales denote the mean metallicity by mass as a fraction
of solar, averaged horizontally for each height and time, whilst red dots indi-
cate the heights and times of the SNe. During the first 3 Myr the SNe begin
to drive a vertical wind from the disc. Individual SNe that are particularly
high above the disc can be associated with their individual ejecta, and the
discrepancy between the disc and the wind metallicity can be seen.

A similarly significant trend, somewhat less strong, appears for
the metal ejection fraction, i.e. at high disc surface densities and
gas fractions the discs are less efficient at ejecting their metals. It
should be re-iterated that we are only examining |z| < 500 pc here,
and so these metals may not escape the halo (and indeed may be
recycled back in to the disc), an effect which again will be more
prominent for more massive galaxies with deeper potentials.

The ratio Bz/(yB), plotted in the bottom panel of Fig. 8, is a
measure of the average metallicity of the wind. The scatter is re-
duced in this data, i.e. the SN distributions that are more effective
at ejecting metals are also more effective at driving the winds. As
discussed in Paper I the latter effect seems a result of a greater
fraction of SN occurring near to the edge of the disc and is prob-
ably the cause of the former too, entailing the correlation. Since
the negative trend with surface density is less strong for the metal
fraction, the metallicity becomes an increasing function of surface
density, i.e. although high-density discs are less effective at ejecting
metals, they are even less effective at driving a wind and as a result
the metallicity of the wind is higher. In summary: denser discs drive
hotter, higher metallicity winds, with lower mass and metal mass
loading.

The best-fitting regression for the metal ejection fraction in units
of the yield y is

3. —0.6740.14
Pz _ [0.10+£0.01] [ ———
10M@ pc?

y
fg —0.18+0.10
e , 19
x (0.1 (19

where we give jackknife errors. We see that the metal mass
loading has a negative dependence on gas surface density and a
weak dependence on gas fraction. A leading coefficient of <0.5
indicates that the most of the metals distributed by the SNe are re-
tained by the ISM. The best fit for the dependence of the mass loss
is consistent with that found in Paper I, reported in equation (7),
B oc B f1°. The mass loading has a stronger negative depen-
dence on gas surface density; both depend weakly on gas fraction.
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Figure 8. The dependence of the mass loading, 8 = My /M,, the metal
mass loading, Sz = MW,Z/M*, and the ratio Bz/(yB) (top to bottom) on
the total surface density, ¥ = X/f, (stars and gas). Coloured symbols
refer to the different gas fractions, fy, as per the legend, power-law fits to
the dependence on X for some values of f;) are overplotted as dotted lines
(colours matched to symbol colours). There is a large amount of scatter
in the upper two panels due to the stochasticity of the star formation, but
definite trends of mass and metal mass loading decreasing with increasing
% and fy are still clearly visible. The scatter in the bottom panel is less,
suggesting that events that induce higher mass ejections also induce higher
metal ejections.
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Figure 9. Left-hand panel: the thermalization efficiency nt (equation 20) as a function of total surface density X. Right-hand panel: the fraction of metals
entrained in the wind, Bz/y (equation 18). Gas fractions are coloured as for Fig. 8. The dependence of thermalization efficiency and metal mass loading on the
properties of the disc are very similar, with nt smaller than 87/y by ~0.4 dex due to radiative cooling.

Therefore the metallicity of the wind is ocfz/8 oc B*¥*015, im-
plying that winds escaping from higher surface density discs (or
more massive galaxies) have higher metallicity.

It is interesting to contrast these values with limiting cases. If
all the ejecta were to escape, but entrain none of the ISM gas, the
metallicity of the ejecta would be equal to the yield, 8, = y and
the mass loading B = (Mgsn/100 M@)el_oﬁ) = 0.1. In this case the
ISM would remain unenriched as all the metals are swept out of
the simulation volume. We see, however, that in our simulations a
large amount of gas is entrained into the wind, 8 > 0.1, yet most
of the ejecta’s metals remain in the disc, 8z < y. Nevertheless, the
metallicity of the wind still lies between that of the ISM and the
ejecta, i.e. Zism < Zy < Zj (see Figs 2 and 3), indeed it would be
extremely difficult to alter the order of these metallicities, a point
we discuss in the following section.

3.4 The correlation between enrichment and temperature

One aspect of the simulations noted in Section 3.1 was the strong
correlation between enrichment and temperature. The extent to
which this is maintained would follow from the balance between
the processes that separate these quantities versus the processes
that cause them to colocate, or at least have no preference for their
separation.

The driving process for colocation in our simulations is that
SNe are the sources of all the metals and the major source of
additional thermal energy. It is also notable that advection will
generally transport both metals and thermal energy together.

A slightly more subtle point is that the diffusivity of heat and
mass is closely related, due to their underlying molecular origins.
Whilst diffusion in the most direct sense is not an important process
in the ISM, the diffusion that occurs in shocks and also as a result of
turbulent mixing very definitely is, and the cotransport of thermal
energy and metals in the hydrodynamical solvers is an important
effect that causes the metals and thermal energy to colocate.

In opposition to these are a number of processes which treat
the metals and thermal energy separately. First, there is radiative
cooling which allows thermal energy but not metals to escape. In
addition, this cooling is in general metal dependent (although only
included in a number of our simulations), which generally increases
the radiative losses from high-metallicity gas. Notably cooling is
much more effective for the warm, dense gas than it is for the
hot, sparse gas, and so we may expect the correlation to be more
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pronounced in the latter case, and especially in the material that
forms galactic winds. We should also consider accretion which will
primarily consist of lower metallicity gas whose temperature may
be hot (as it shocks against the gas disc), or come in the form of
cold streams (see e.g. van de Voort et al. 2012).

The preferential distribution of metals in the hot phase also
appears to be found in observations, with Ferrara, Scannapieco
& Bergeron (2005) finding that only 5-9 per cent of metals lie
in the cool (10* K) phase of the ISM, whereas the rest go into an
unbound hot phase. Lower limits on the CGM metallicity around
Milky Way-sized galaxies (Tumlinson et al. 2011) also suggested
they may substantially exceed the fraction of metals in the ISM,
consistent with the most recent results from Werk et al. (2014) and
Peeples et al. (2014). Interestingly those latter results include metals
at T = 10* K, so whilst they are certainly unbound today, their ion-
ization state when they exited the ISM is unknown. We explore the
correspondence between thermal energy and metallicity in Figs 9
and 10.

In Paper I we constructed a model to estimate how efficiently SNe
bubbles drive a wind, and what fraction of SNe energy is simply
radiated away. The model is based upon the snowplough models of
Cox (1972) and Chevalier (1974), of a shock expanding in the ISM
surrounding the blast, until the thermal energy losses due to cooling
become comparable to thermal energy dilution due to shock heating.
In this very simple model, a mass My, of ISM gas was heated by
each SN, and this mass escaped to form the galactic wind. Since the
blast wave contains all the energy and mass of the SN, we would
expect a complete escape of this bubble to also carry 100 per cent
of the metals. As we discussed in Section 3.3, if only the SNe ejecta
themselves were to escape, the resulting mass loading would be
B ~ 0.1. Given that we measure much higher values for the mass
loading in these simulations, the amount of gas heated by the SNe
must be considerably larger than the mass of the ejecta.

Following Paper I, we consider the mean fraction of power
‘thermalized’ in the outflow, nr, as the sum of the fractions of
mechanical and thermal energy in terms of the mean injection rate
(by star formation), i.e.

NT = Nmech 1 Ntherm- (20)

For our simulations where the only other mechanism by which
energy can leave the box is radiation (from cooling), then for a
steady state disc the sum of nr with the mean fraction of energy
radiated (e.g. plotted in Fig. 5) is unity.
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Figure 10. The thermalization efficiency nr versus fraction of metals en-
trained Bz/y. Gas fractions are coloured as for Fig. 8. Dotted black line
indicates where the points would lie if nt = fz/y, i.e. the same fraction
of metals and thermal energy escape. Dotted red line indicates the relation
nt = 0.4B2/y, i.e. if the fraction of energy escaping in the outflow is 40 per
cent of the fraction of metals ejected.

Note that, just as in Paper I, we expect the majority of this en-
ergy to be converted into mechanical energy (of the wind) at large
distances from the galaxy as the gas adiabatically expands, however,
inside the ISM the thermal energy is a large component. Assuming
that thermal energy and metals trace each other perfectly, and cool-
ing losses are negligible, then implies nt = fz/y. Since cooling
does play a role, however, we expect nr < 82/y. We plot nr and
Bz/y side by side in Fig. 9. Their dependence on the properties of
the disc are very similar, with some runs with given gas fraction
tracking each other in great detail as the surface density is varied,
and vice versa, as expected.

In Fig. 10 we plot nt versus fz/y for those same simulations,
and overplot two scenarios for thermalization as dotted lines. A
model in which the same fraction of metals and energy escapes,
which has nt = Bz/y, is shown as the black dotted line. A model
in which the energy fraction escaping is 40 per cent of the metal
fraction that escapes, which has nt = 0.4 82/y, is shown as the red
dotted line. The latter represents quite a good fit to the simulation
results. In a steady-state galactic wind model, one would expect the
metals that remain in the disc to radiate all their thermal energy,
so this result suggests that the ejecta that escapes radiates away an
additional 60 per cent of its energy as it mixes with the ISM gas.
Note that the thermalization nt < 1 and nt < Bz/y: a steady wind
cannot carry away energy at a rate that is higher than the SNe energy
injection rate, and thermal energy cannot diffuse less than metals
(but it can be lost due to radiation). It is interesting to compare the
thermalization efficiency to the commonly quoted 10 per cent of
Larson (1974). Our simulations suggest that this fraction depends
upon the metal ejection and is not universal.

3.5 The effect of stellar winds on mass loading

In Fig. 11 we study the effects of including stellar winds from OB
associations. The overall effect is an increase in the outflow of ~7
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Figure 11. The effect of stellar winds from SNe precursors on a galactic
wind for a model with star formation rate ¥, = 6.7 x 1072 Mo kpc 2 yr_1 .
Blue solid line indicates the ejected surface density for a model with thermal
energy injection from SNe but neglecting stellar winds, green line is the same
model when stellar winds are included as described in the text. The total
mass released by SNe and winds per unit area is shown by the dotted lines.
The gas ejected from SNe and in winds has coupled to a much larger mass
in gas, entraining it in a wind from the disc. The effect of stellar winds is
small.

per cent, approximately in proportion to their mass as a fraction of
the SN ejecta, but far less than their energy input, as the amount
of energy we have injected of the 10 Myr duration of the stellar
winds is of the same order as Egy. This may in part be due to our
lack of resolution for this process, but our energy injection rate is
rather high and the site of the injection (exactly at the position of
the SN rather than with a large dispersion) will count against this,
so we infer from this that SNe are still the dominant process for gas
ejection.

It is interesting to compare our findings to other simulations in
which radiation and dust driving (Martin 2005; Murray, Quataert
& Thompson 2005; Sharma, Nath & Shchekinov 2011) were
included, such as those described by Hopkins et al. (2011) and
applied in Hopkins, Quataert & Murray (2012). The latter paper
concludes that although radiation and winds are important for un-
binding giant molecular clouds, SNe are still the dominant mecha-
nism for driving galactic winds. This is consistent with the results
in Fig. 11. Our simulations are less reliant on the stellar winds to
destroy the dense star-forming regions since our SN distribution is
pre-computed according to the KS relation and not tied to the gas
distribution in which they explode. If anything we see even less ef-
fect of stellar winds on the outflow, which may be due to Hopkins’
use of multiple photon scatterings to further increase the momentum
imparted by the radiation. We note that this system is relatively gas
poor compared to the high-redshift galaxy progenitors that Hop-
kins et al. (2012) suggested may be affected most, however, we did
not try these cases as we were not convinced that our simulations
could correctly follow the evolution of the H 11 regions at higher gas
surface densities, where the higher recombination rates can sup-
press the formation of H 1 regions at (even our) grid resolution.
We leave a more thorough analysis of the parameter space of wind
driving on these scales for a future paper. Our placement of SNe
in environments that are not necessarily the densest may also cause
us to underestimate the importance of winds, nevertheless in our
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simulations it is undoubtedly realistic since massive stars do not
explode in dense environments.

Fig. 11 also provides an alternative aspect from which to imply
the mass loading of the winds. Since the gas ejection rate from
SNe is related to the star formation rate via the ejecta mass and the
proportion of SNe in the IME, i.e. Zsn/ 2, = (Msx/100 M@ )e 0 ~
0.1 for this model, then the mass loading can be deduced as the
product of this and the ratio of ejected surface density to SN ejecta.
This can be read from Fig. 11 as ,/Xgn ~ 10, implying g =
EW / 3, ~ 1 for this simulation.

3.6 Summary

In this section we have analysed a series of numerical simulations of
different galaxy disc environments with and without stellar winds
in order to understand the effects on the enrichment of the outflows
(the effect on the mass loading being the focus of Paper I). The
primary result of these simulations is that higher surface density
disc environments display more enriched outflows, and indeed the
metallicity of the outflow is higher than the metallicity of the disc.
This is compatible with the outflows having lower mass (i.e. a lower
‘mass loading”) since SNe are the source of both metals and thermal
energy, however, this is not generally considered in models of galaxy
formation. As such, in Section 4 we construct a simple model of
galaxy growth that incorporates outflows whose metallicity depend
on galaxy mass.

4 APPLICATION: THE MASS-METALLICITY
RELATION

In this section our aim is to use the simulation results to understand
the evolution of the mean gas phase metallicity (Z,) of a galaxy,
and the mass—metallicity relation of galaxies (Z,(M,)). We con-
struct a simple model of metallicity distributions from the gas and
stellar evolution of galaxies along with the metal ejection rates.
We demonstrate that these assumptions are consistent with the
metallicity distribution of faint stars (no G-dwarf ‘problem’) and
that it is straightforward to match the observed mass—metallicity
relation of galaxies with reasonable values for the metal ejection
rates. We discuss the origin of the turnover in the mass—metallicity
relation in our model and compare to other analytic models. Finally,
we compare the metallicity ejection rates with those found in the
hydrodynamical simulations of Section 3.

4.1 Inferring ISM metallicities

The gas reservoir, M,, of a galaxy evolves with the following sources
and sinks:

My = M, — (1 = /)M, — M,, @h

where M, is the (cold) gas accretion rate, M, is the star formation
rate, Mw is the wind-loss rate and f; is the fraction of gas released
back in to the ISM via short-lived stars and stellar winds (we assume
instantaneous recycling).’ The total metal mass of this gas reservoir,
My, evolves as

d

My = 5 [Z,M,] (22)

6 Note that in our convention M, refers to the total amount of stellar mass
created, not just the fraction (1 — f;)M, that is in long-lived stars.
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=+ [ ZIM, + ZM, — ZyM,, — Z,M,, (23)

where y is the yield and Z,, Z,, and Z, are the metallicities of the
accreting, wind and ISM gas, respectively. The terms on the right-
hand side then refer to metals released by short-lived stars, metals
accreted from inflowing gas, metals lost in the wind and metals
locked away by star formation, respectively.

Our first approximation is to set Z, = 0, assuming that the metal-
licity of the inflowing gas is negligible compared to that of the ISM.
We note that this may be violated for high-mass galaxies that are
recycling metals through their haloes and we return to this in Sec-
tion 4.3. We also write the outflowing metals in terms of the star
formation rate, Zy, M, = Bz(t, MOM,, transforming equation (23)
to

ZoMy + Z;My = [y — Bz (M., 1) — Zo(1 — f)] M.. (24)

If we then make the assumption that there is no extra dependence on
time (or equivalently redshift), other than that implied in the stellar
mass, i.e.

Mg(Mﬂ 1) = Mg(M*)a (25)
Zy(M.. 1) = Zy(M,), (26)
Bz(M..t) = Bz(M,), 27

then we can write equation (24) parametrized in terms of M, rather
than time as

diM (Z:Mg) = —(1 = f)Zg +y — Bz(M.). (28)

In Appendix A we use this relation to calculate the metallicity
distribution function of stars, and show that is does not suffer from
the large tail to very low metallicities of the (simplistic) ‘closed
box’ model.

In order to proceed further we need some estimate of M,(M.,),
i.e. the gas mass corresponds to a given stellar mass. In effect we
are assuming that galaxies move along the redshift zero relations, in
which case the evolution is parametrized by stellar mass. In general
this precludes growth in stellar (and gas) mass due to mergers,
which would disrupt this relation, however, for lower mass galaxies
mergers are not significant. This assumption results in a mass—
metallicity relation that is independent of redshift and there is some
evidence that this is indeed the case if one takes a homogeneous
sample (see e.g. Stott et al. 2013).

We will assume that gas and stellar mass are related as

M, M, \*
A
10°Mg 10°Mg

(we discuss the observational M,—M, relation later in this section),

where A, and «, are dimensionless constants. This allows us to
solve equation (28) in integral form as

M,
Z;M, = / dm (y — Bz(m))
0

X exp |— - ) (30)
1 —ay ) \My(M,)  My(m)

where M, is now the independent variable.
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4.1.1 Special cases of M, > My and M, < M,

Equation (30) has two special cases that are of particular interest
when approximating the mass—metallicity relation, that of M, > M,
and M, < M, corresponding to high and low stellar mass galaxies.
In the low gas reservoir limit, we find

1
lim
Mg/ M.—~0 Mg(M*)

(=2 Gy~ ).
X exp |— —

I —a, My(M,) My(m)

_ Y- ﬂz(M*), 31

1—f

i.e. instantaneous response of the metallicity to the star formation.
The gas reservoir is so small that it no longer has no ‘memory’ of
the star formation history, and the metallicity is set purely by the
yields and the current metal ejection rate. Equation (31) is also the
limit when star formation is slow, i.e. equation (24) is allowed to
evolve to a point where Zg = Mg = 0 (which will be violated for
small galaxies since the total stellar mass is increasing fast).

In the gas-dominated case, M, < M,, equation (30) yields

M*
Mg

Zy

M,
/ dm (y — Bz(m)
0

Z (M)~ 5 (y — Bz(M.)), (32)
to first order in y — Bz(M,). In this limit the mass—metallicity
relation is determined by the evolution of gas and stellar mass. The
metallicity is not set by an equilibrium, but rather is set by the
cumulative yield of the total mass in stars that have been formed up
to that time.

It is notable that these relations do not depend directly either
upon the gas accretion rate M, or on the mass loading of the wind,
B = M,/M,, ie. the metallicities derived from equation (30) do
not include those terms. They are of course included implicitly,
however, as they are the galactic evolution processes that shape the
evolution of the gas mass and thus the M,—M, relation in equation
(29).

One final case that is of interest is when we assume ISM gas
and metal masses have reached an equilibrium, i.e. equation (23)
with the left-hand side set to zero, and that the metallicity of the
outflow Z,, = Z,, the mean ISM metallicity. This corresponds to
a well-mixed outflow, with equilibrium metallicity of outflow and
ISM equal to

-y

1+8—f
The case with f; = 0 is discussed in FDO8 and Davé, Finlator &
Oppenheimer (2011).

Z, (33)

4.1.2 Relating stellar and ISM gas masses

To solve equation (30) in the general case requires knowledge of
the stellar mass to ISM gas mass relation. Observationally, stellar
masses are usually inferred from the K-band luminosity (e.g. Bell
& de Jong 2001); however, inferring the gas mass is more subtle.
McGaugh (2005) and West et al. (2009) give stellar mass to H 1
(21 cm) gas masses, but for high-mass galaxies there may also be
a large H, component. Leroy et al. (2008) estimate the H 1 4+ H;
mass using CO measurements. For our purposes some of the H 1
may not be important for the ISM, as the H 1 disc is considerably
more extended than the stellar disc (Walter et al. 2008). These data
sets are also primarily focused on star-forming galaxies, which bias
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their normalizations to higher gas masses (Catinella et al. 2010),
and the gas fractions could be a factor of 2 smaller (see e.g. De
Rossi et al. 2013).

A more indirect method of measuring the total gas mass is via the
star formation rate (inferred from the Hoe luminosity), e.g. as used
by Tremonti et al. (2004). Some radial profile for the gas surface
density is assumed and then a normalization deduced by inverting
the KS relation.

The use of the above methods to construct a stellar mass to gas
mass relation is discussed in some detail in Peeples & Shankar
(2011), where the gas mass seems to be well fit by a power law
in stellar mass. Gas mass increases with stellar mass, but in a less
than proportionate way, so the gas fraction is a decreasing function
of stellar mass. Ignoring the considerable scatter, a good fit the H 1
and H, data is of the form given by equation (29) with A, = 1 and
ay = 1/2 (e.g. Peeples & Shankar 2011; Papastergis et al. 2012).
The gas masses found from inverting the KS relation would prefer
a higher exponent, nearer to o, ~ 0.8, i.e. the gas masses found
from integrating H 1 over the galaxy discs exhibit a much weaker
dependency upon stellar mass than the gas mass inferred from the
star formation rate. These quantities can be discrepant because the
star formation is preferentially tracing the molecular gas (e.g. Leroy
et al. 2008) and indeed the H 1 sizes are much more extended than
the star-forming disc (Walter et al. 2008), and thus we choose the
H 1 estimates as a better tracer of the ISM gas which will dilute the
metals.

4.2 Predicting the mass—metallicity relation

In this section we apply the results from our simulations in addition
to the analysis of Section 4.1 in order to deduce the mass—metallicity
relation of galaxies. This allows direct comparison between simu-
lated metallicities and those from observations.

In this section we will compare our results to the Kewley &
Ellison (2008) fits to the M,—Z, data of Tremonti et al. (2004) and
Denicold, Terlevich & Terlevich (2002):

12 4 log,, (O/H)po, = 8.566 + 0.475x — 0.095x> — 0.003x°,(34)

12 + log,; (O/H)pg, = 8.491 + 0.349x — 0.102x* 4 0.008x° (35)

— M,
s = o
(see also Peeples & Shankar 2011), where x = log,, ;= and

T04 and DO2 refer to Tremonti et al. (2004) and Denicol6 et al.
(2002), respectively.” In general there is a scatter in the metallicity
data of a factor of ~2.5 in the mass range 10°-10"! Mg (Kewley
& Ellison 2008), where the T04 relation has a relatively steep slope
compared to other fits. D02 has a mid-range slope but is slightly
low in normalization, by a factor of ~1.5, in comparison to the
distribution of fits displayed in Kewley & Ellison (2008).
These are converted to metal mass fractions using

log,o Ze = log,, O/H + 0.9560, (36)

i.e. the oxygen is assumed to be polluting a primordial mix that was
approximately 75 per cent hydrogen by mass.

We now turn our attention to the M,—Z; relation predicted by our
analytic model. By combining the metallicity integral in equation

7 Note our definition of x differs from that of Kewley & Ellison (2008)
and Peeples & Shankar (2011), to expand about a galactic stellar mass of
10° Mg, which alters the coefficients and truncates the rather large number
of digits required.
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Table 1. Parameters to the power-law
fits, described in equation (37). Rcon
is the single parameter constant fit (i.e.
fr = 0) to the T04 relation, whereas
R1, R2 and R3 are the two parame-
ter fits to the TO4, D02 and HiZELS
metallicity relations, respectively.

Fr R
Rcon 0.62 0
R1 0.64 0.02
R2 0.47 0.10
R3 0.42 0.20

(30) with the gas mass to stellar mass relation from equation (29)
with Ay =1, o, = 1/2, the only remaining component is the depen-
dency of the metals lost in the wind, 87, upon the stellar mass. This
quantity was calculated for small patches of a disc in Section 3.3,
and we will explore this correspondence in Section 4.3. We begin,
however, by exploring some simple models for the dependence on
stellar mass that illustrate how we can compare to the observed
M,—Z, relations.

‘We now construct some fits for the retained metal fraction. Recall
that B is defined as the mass of metals ejected from the disc (not
necessarily the halo) per unit mass of star formation, so 1 — 2/y
is the fraction of metals retained, hence lies in the range [0, 1]. We
now construct a series of fits where the retained metal fraction is
approximated by a power law,

1
~frx TR 0
p_ Bz _ ] Fex 1075 ML= FE <10 Mg, a7

y 1, M, < F{* x 10° Mg,

i.e. the stellar mass to the power —fz, where we have assumed
that Fgr € [0, 1] and fr > 0. Since a two-parameter fit allows a
considerable amount of freedom for our data sets, we also consider
the single parameter (constant fit) of only Fr (with no limitations
on the domain).

In Table 1 we have fitted the power law for the retained metal
fraction to the fits for the equations (34) and (35), along with a
fit to the z = 0.84-1.47 High-z Emission Line Survey (HiZELS)
data points from Stott et al. (2013), which we refer to as R1-R3.
Additionally we include the single-parameter fit to equation (34)
which we refer to as Rcon. Each fit is the least-squares error fit to
the four stellar mass values of the HiZELS data, which gives an
approximately uniform coverage of the stellar mass range.

In Fig. 12 we show the effects of these retained fractions against
the observed mass—metallicity relations. We can immediately see
that we have achieved good normalizations without invoking
extreme retained fractions. The normalization is degenerate between
changing the yield, y, and normalization of the retained fraction, but
a value of ~50 per cent for the fraction of metals ejected is quite
reasonable (and consistent with, say, the IGM calculations of Fer-
rara, Pettini & Shchekinov 2000 or the quasi-stellar object (QSO)
absorption studies in Meiring et al. 2013).

In addition to the normalization, the transition from large to small
(or even negative) slope also seems to fit well. As the exponent of
M, in the retained fraction falls, e.g. to the most in extreme value
R3, the slope of the M,-Z, falls correspondingly at high masses.
This can be understood in terms of the special cases described in
Section 4.1, and are shown as dotted blue lines in Fig. 12.
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Figure 12. Derived mass—metallicity relations for the different models of
metal outflows. Heavy black solid and dashed lines are the Tremonti et al.
(2004) and Denicol6 et al. (2002) M,—Z, relations, respectively. Points with
error bars refer to the z = 084—1.47 data of Stott et al. (2013). Blue, green,
red and cyan solid lines correspond to our model using the parameters for
the retained metal fractions given in Table 1, respectively. Blue dotted lines
are the asymptotic relations for low and high gas fractions for the Rcon fit
(blue solid line) in equations (38) and (40).

At low stellar masses, we will be in a gas-dominated phase,
M, < M,, and hence from equation (30),

Mr
Zy~ 5 (v = Bz(ML) (38)
Ig\/l* 12
~ <m> (y — Bz(M,)). (39

The slope of the Z,—M, relation is then set almost entirely by the
gas mass to stellar mass relation, which for the parametrization of
equation (29) is Z, o< (M, [/ Mg,) ~ MO for the value of a, =0.5.
This is the sloping blue dotted line in Fig. 12. As Peeples & Shankar
(2011) argue, these lower values of c (as opposed to values closer
to 1 found by inverting the K-S relation) are more appropriate here
since the metals are diluted by the total gas rather than the molecular
gas traced by the star formation. Notably Zahid et al. (2014, after
this paper was submitted) similarly argue that the turnover mass is
driven by saturation of the stellar fraction (of baryonic material) for
galaxies at z < 1.6.

At the high stellar masses the gas reservoir is small, M, < M,,
and we have the limit given by equation (31),

~ Y= Bz (M)

1-f
The metallicity simply follows the retained fraction slope which is
more gentle: it is the horizontal blue dotted line in Fig. 12. We note
that this gentle slope requires that the retained fraction must be a
weak function of stellar mass, with exponents of —0.1 and O for the
relations shown.

The transition of high to low gas fraction with increasing M, in
our model causes the turnover in the slope of the mass—metallicity
relations in Fig. 12, which gradually transitions as the stellar mass
exceeds the gas mass. Whilst not being inconsistent with the stan-
dard explanation of the turnover (that it is due to galactic winds; see

Z, (40)
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e.g. Tremonti et al. 2004), this description does provide additional
nuances that make it distinct from other models.

One such alternative is given in FDO8, where it is argued that the
transition in slope is driven by the changes in mass loading from
high (8 > 1) tolow (8 « 1) with increasing M,, and that the metal-
licity is approximately given by equation (33). In the FDO8 model it
is assumed that the galaxies are in instantaneous equilibrium, with
inflow balancing star formation and outflow, which allows the de-
duction of the dilution of metals and hence the gas phase metallicity
(in equilibrium). In our model we assume a relation between the
gas mass and the stellar mass and hence at all stellar masses we can
calculate the dilution. Since our galaxies are growing in gas mass
whilst the FDO8 gas reservoir is constant, the metallicities will be
distinct, although for the high-mass galaxies the growth rates will be
small and hence our predictions similar. Even for low-mass galax-
ies, howeyver, if the outflow rate (MW) is an approximately constant
fraction of the inflow rate (M,), then for power-law inflow rates
(in M,) the ratio of the gas mass to the stellar mass compared to
the mass loading will only differ by a factor, making the models
very similar in form and normalization. This explains why both
models give similar Z,—M, relations even though the underlying
assumptions are quite distinct.

In terms of retained fraction of metals, the FDO8 model assumes
a well-mixed ISM, i.e. the wind metallicity is the same as the ISM
metallicity, in contrast to our model where the wind can prefer-
entially carry away metals. This allows our models slightly more
freedom to adjust the slope of the M,—Z, relation at high stellar
masses, where the mass loading < 1, i.e. equation (33) implies
the metallicities will converge to the effective yield, whereas the
introduction of S,(M,) in equation (31) releases us from this con-
straint.

4.3 Comparison with simulations

We are now in a position to discuss perhaps the most interesting
aspect of all, the use of hydrodynamical simulations which in prin-
ciple allow us to predict the retained metal fraction and compare
it to observations. We should bear in mind, however, that the fits
to the observed mass—metallicity relation all have a rather weak
dependency of retained metal fraction as a function of stellar mass,
i.e. the exponents —f lie in the range [ — 0.2, 0].

The simulations performed in Section 3 were parameterized in
terms of gas surface density X, and gas fraction fy, so to put these on
the mass—metallicity relation we must transform these into stellar
masses. To do so we perform a similar analysis as in Paper I to
estimate dependencies on circular velocity from those on surface
density. We begin by assuming the discs to be exponential with total
mass:

My = 2nE R}, 41

where Ry is the disc scale length, and X, the central gas surface
density. Shen et al. (2003) estimate the sizes of discs to scale weakly
with stellar mass as Ry o« M%'>. We normalize to the Milky Way,
assumed to have a stellar mass of 5 x 10/ Mg and scale radius
2.5 kpc. Putting the total mass of the disc in equation (41) together
with the power-law galaxy stellar mass to size relation gives the
conversion

_ 14+2x0.15
M, = 1- fg ngg l
* 0.9 \ 1270Mg pc2

x5 x 10" Mg, (42)
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Figure 13. Estimates for the retained metal fraction, 1 — 8z/y as a function
of stellar mass. Blue, green, red and cyan lines are the power-law models
from Table 1 (and Fig. 12) whose parameters were fitted to match the
observed data. Black points with error bars denote bins of the simulation
outputs (see Section 3) binned into stellar masses of 108, 10%, 10'0 and
10!t M), see main text for details of the conversion.

i.e. galaxies with low surface densities (or just high gas fractions
fe) correspond to low stellar mass galaxies, whilst at higher surface
densities or very low gas fractions the galaxies have higher stellar
masses.

Combining all our simulations, parameterized by X, and inte-
grating these over exponential disc, we are in a position to compute
the retained metal fraction, 1 — 8/g, as function of stellar mass,
shown in Fig. 13, where we have combined the data into stellar mass
bins of 10783, 10333, 1057195 and 10'%5~"-> M. For each bin
we plot the mean retained fraction and the error bars, which due both
to the stochastic nature of the energy injection by SNe (in time and
in position in the disc), and partly due to the different gas fractions
and surface densities that correspond to a single stellar mass.

Noticeably the weak trend in simulation data, i.e. lower retained
metal fractions (high metal ejection fractions) with increasing stellar
mass (i.e. at higher total surface density), appears in tension with the
fit in equation (19), where metal ejection fractions fell with higher
gas surface densities (but fell with gas fractions). This inversion
is partly due to the conversion from logarithmic to linear space,
and partly due to the mapping of the parameters domain on to
stellar mass. The contribution of the former is due to the increased
variance between the simulations as a function of stellar mass,
i.e. it causes the mean to rise when we take the (convex) map
from logarithmic to linear. The mapping of the parameters matters
because there is a lack of high gas fraction high stellar mass galaxies,
and low gas fraction low stellar mass galaxies. Whilst this limitation
is qualitatively realistic — those objects are indeed more rare than
the parameters we explore — this does highlight the importance of
the galaxy distribution and that the trends for the simulation points
in Fig. 13 should really only be considered in a qualitative sense.

Along with our simulation data we have plotted the power-law
models in Table 1 of the retained metal fraction. Although we argue
it is unwarranted to place a great deal of attention to the exact nor-
malization of our relations — due to both the outliers, uncertainties in
yields, and the Z,—M, relation etc. — the metal retention factors that
result from the combination of simulations and the assumption of
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an exponential disc do appear reasonable, both between the curves
and the data and compared to IGM estimates (e.g. Ferrara et al.
2000; Meiring et al. 2013). If there is any preference suggested by
the simulation data, it would be for the more negative dependence
of retained metal fraction on stellar mass (e.g. fits R2 and R3), i.e.
for more massive galaxies to expel a greater fraction of their metals
than smaller ones, and correspondingly for there to be a turnover of
the mass—metallicity relation at high stellar masses, for example as
exhibited in the HiZELS data in Fig. 12.

If the dependency of retained metal fraction on stellar mass were
indeed this strong, one process which may reduce its effect is that
of gravity. For massive galaxies metals may escape the disc but not
the halo, leading to significant recycling of the metals. This could
be parametrized either as a lower ‘effective’ ejection fraction, or
by re-introducing the metallicity Z, of accreting gas in equation
(23) which was assumed to be zero in the analysis of Section 4.1.
One other intriguing possibility from this type of simulation is to
study models of the radial distribution of metals in galaxy discs and
compare to observational constraints e.g. from Kewley et al. (2010).
We leave radial transport of metals (e.g. Werk et al. 2011) to future
work.

5 CONCLUSIONS

In this paper we have performed a series of hydrodynamical simu-
lations that extend the work of Paper I to trace the metal enrichment
of the ISM. We simulate patches of SN-driven turbulence in a grav-
itationally bound disc, including cooling and metal enrichment via
the SN ejecta, using the FLASH code on a regular grid. Our simu-
lations start from a column of gas which is initially in hydrostatic
equilibrium. We assume that stars form at a rate set by the KS
law, and that the associated SNe inject mass, metals and energy
into the ISM. The sub-parsec simulations trace the transition of the
SN ejecta from thermally driven to momentum driven, and chance
overlap of hot SNe bubbles lead to regions in which the ISM is
locally overpressurized. These hot bubbles vent below and above
the disc that in a time-averaged sense form a wind of hot, enriched
gas, which is significantly mass loaded. We also experimented with
including stellar winds, for example from the SN precursor or more
generally from other massive stars that form together with the SN
progenitor.

In order to make the simulations as scale-free as possible we used
a simplified cooling function that allows us to consider the escape
of the metal ejecta independently of the background metallicity
of the ISM in individual runs, and allows easy comparison with
the relations for metal ejection rates in Paper I. We confirmed that
this does not have a strong impact on the results in Fig. 6, where
we compared to simulations where metal-dependent cooling was
enabled and alternate background metallicities were tried.

In Section 3 we investigated the metallicity of the ISM and the
mixing produced by successive generations of SNe, where we found
a metallicity bi-modality between an ejecta-rich hot phase, and a
slowly enriching warm phase. This is primarily because SNe are
the sites of both metal and energy injection. Given the molecular
nature of diffusion, we expect metals and thermal energy to dif-
fuse at the same rate implying a metallicity—temperature relation
(more enriched gas being hotter). This can be suppressed in the
case of strong cooling, however, this is not important for the hot
phase ejected in the wind. For the cooler phases this correlation is
correspondingly less strong, and would be further suppressed in our
simulations had we included metal-dependent cooling.
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In Section 3.3 we parameterized the metal loss in the outflows as
a function of gas surface density and gas fraction of the simulated
columns. We found a weak dependence of metal mass loss on
surface density, such that the metallicity of the outflow (the ratio of
the metal mass loss to the total mass loss) has a negative dependence
on surface density. In other words higher surface density discs have
higher star formation rate, lower mass loading, with hotter, more
enriched outflows.

In Section 4 we constructed a simple model of the metallicity
evolution of a galaxy, showing how the dependence of galaxy gas
mass and metal ejection as a function of stellar mass can be used to
infer the gas phase metallicities. The model includes inflow of gas,
star formation and gas and metal outflow which are assumed not
to depend explicitly on time (redshift) yields a differential equation
for the evolution of the ISM metallicity as function of stellar mass,
which can be solved provided we have a model for how the gas
fraction of a galaxy depends on its stellar mass.

By applying this model to observed fits to the Z,—M, gas
metallicity—stellar mass relation we find that at low M,, the
mass—metallicity relation is not set by an equilibrium but rather
is determined by the dependence of the ratio of the gas mass to stel-
lar mass, M, /M, on M,. In this case Z, is set by the cumulative yield
of all the stars formed up to that time. A dependence M, /M, MO3
(following Peeples & Shankar 2011) yields Z, ox M3, consistent
in normalization and slope with the observed relation. Higher M,
corresponds to lower My, with Z, now primarily determined by the
instantaneous response of the gas reservoir to enrichment, yielding
Z, nearly independent of M,. We explored what sets the turnover
location of the Z,—M, between these extremes. Assuming galaxies
have exponential discs, we can make use of our set of simulations at
various gas surface densities to translate metal outflow rates as func-
tion of surface density, to outflow rates as function of stellar mass.
This allows us to examine to what extent the simulations yield metal
retainment fractions that are consistent with the observed Z,—M, re-
lation. The simulations yield retained metal fractions that decrease
with M,, approximately ocM %2 for models that assume that the
gas fraction also decreases with increasing M,. Such a strong de-
pendence does well in reproducing the observed Z,—M, relation.

Several avenues exist for future work, such as the modelling of
the recycling of metals in haloes to improve the constraints at high
stellar masses. It would also be very interesting to apply this data
set to study the radial evolution of metallicity in disc galaxies. The
distribution of gas that exits these volumes is also of interest as
it should form the basis of the CGM, and it may be possible to
construct mock absorption lines to compare to, for example, the
cosmic origins spectrograph results.
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APPENDIX A: COMPARISON WITH CLOSED
BOX MODELS

One of the simplest ways to test the metal enrichment scenario
described in Section 4 is to estimate the number of old faint stars of
a given metallicity. Lifetimes of sufficiently low-mass stars exceed
the age of the Universe and thus they become a tracer of the evolution
of star formation. The relative absence of low-metallicity faint stars
(van den Bergh 1962; Schmidt 1963) compared to that predicted by
the ‘closed box’ model (described next) has become colloquially
known as ‘the G-Dwarf problem’.

The closed box model of star formation assumes that there are
two types of stars, those with low and high masses. A given initial
mass of gas gets converted to stars, without mass loss from or mass
accretion into the box. The high-mass stars explode immediately and
return enriched gas to the ISM, whilst the low-mass stars lock away
their progenitor ISM metallicity indefinitely. The model further
assumes the ISM to be completely homogeneous in metallicity.
Assuming an ISM gas reservoir of mass M,(#) that is converted into
stars, the metallicity of this gas reservoir will be

Z,=—ylnpu, (A)

where . = M, /(M, + M,) is the gas to total mass fraction which
gradually becomes more polluted (metal rich) as the remaining
gas reservoir depletes, i.e. the gas metallicity is a monotonically
decreasing function of .

The distribution function of stars of different metallicities in this
model is also a monotonically decreasing function of metallicity
(Schmidt 1963; Pagel & Patchett 1975; Edmunds 1990) and the
cumulative distribution (traditionally but somewhat awkwardly de-
fined as the inverse cumulative distribution function of metallicity
fraction as a function of stellar fraction, due to Schmidt 1963) will
be a convex function with a large tail of low-metallicity faint stars,
ie.

S(<z) 1-ul”
S(<Z)  1-mw

where S( < Z) denotes the number of stars of metallicity <Z, and
Zy, ny are the maximum (minimum) metallicity (gas fraction) in
the closed box model, related by equation (A1). The observations
(e.g. Bond 1970), however, do not find these low-metallicity stars
and suggest that the distribution will be largely concave.?

In order to produce a peak in the distribution function it is nec-
essary that the accelerating rise of metallicity of the ISM be stalled
at some stage. This is usually understood to require inflow (e.g.
Edmunds 1990), as a model with outflow, although removing met-
als cannot reduce the mean metallicity of a homogeneous ISM,
which would need some low-metallicity inflow to dilute. As we
have seen, however, the outflows in our simulations are of higher
metallicity than the average of the ISM. They preferentially remove
high-metallicity gas and so deplete the average metallicity of the
ISM.

With this in mind we applied the corresponding approximations to
calculate the metallicity of stars using the formalism of Section 4.
In Fig. A1 we show the metallicity distributions of faint stars as
predicted by the closed box model, where the fraction of gas to
total mass (u;) is 0.2, and observational points found by Schmidt

; (A2)

8 If the distribution function looks even close to Gaussian, then the inverse
cumulative distribution will always be concave at low fractions and convex
at high ones, so they are unlikely to be described as entirely concave or
convex.
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Figure Al. Cumulative normalized metallicity distribution of faint stars,
the horizontal axis indicating the proportion of stars below the metallicity
indicated on the vertical axis. Green line is the closed box model with
1 = 0.2, blue line is the simple metallicity evolution described in the text,
blue dashed line is the same model but assuming the faint stars form with
a scatter in metallicity of 0.06 dex. Solid black circles are the data from
Schmidt (1963) and the empty circle is the data point from Bond (1970).
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Figure A2. Probability density function of faint stars. Grey histogram is
the data from Jgrgensen (2000). Solid blue line is the metallicity evolution
model described in the text; dotted blue line is the same model but with
+0.18 dex in scatter; green line is the equivalent closed box model, which
suffers from the G-dwarf problem.

(1963) and Bond (1970). We also show the result of integrating
equation (28) to find the metallicity distribution of stars for a M, =
3 x 10' M galaxy with gas evolution given by equation (29) with
A, =1and a, = 1/2. More recent data exist which we will discuss
shortly, here we are simply contrasting the models.

The closed box model predicts that nearly 40 per cent of stars
have metallicity below 20 per cent of the maximum, that is — a large
number of low-metallicity ‘G’-dwarfs — that is not seen in the data,
the so-called G-dwarf problem. To resolve the discrepancy, Schmidt
(1963) introduced a time-dependent IMF to produce more massive
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stars at early times in the galaxy’s evolution. These stars enrich
the ISM without leaving low-metallicity remnants. The model from
equation (28) does a very good job of keeping the number of low-
metallicity stars small, but seems to have a normalization problem
against the Schmidt data. This, however, is the result of taking the
fraction of the maximum metallicity. Equation (28) has a sharp cut-
off at a maximum metallicity of Z,(M,) which carries through to
the cumulative distribution. A more realistic model would have the
faint stars forming with some scatter about the mean metallicity of
the ISM, producing a tail at higher metallicity which would lower
the normalization in Fig. A1 to closer agreement with the data, and
we have illustrated the effect of this by showing the same model
with +0.06 dex of scatter.

To avoid the problems of normalization due to a tail in high-
metallicity stars, a more robust method is to calculate the proba-
bility density function of stellar metallicities. In Fig. A2 we also

The metallicity of galactic winds 2143

compare to the data of Jgrgensen (2000) for stars in the range
0.7 < M/M¢@ < 1.0. More extensive Hipparcos data were analysed
in Nordstrom et al. (2004), with very similar distribution. After
the addition of 0.18 dex scatter in metallicity the model shows a
good agreement in profile to the data, but with an offset in metal-
licity where the data are approximately 0.2 dex higher. One way
to achieve this would be to slightly increase the yield or the re-
tained metal fractions by this factor. For reference we also show
the closed box model for the same galaxy, which reaches higher
metallicity (since it does not lose metals) and has the unobserved
low-metallicity population.

This paper has been typeset from a TgX/IATEX file prepared by the author.

MNRAS 446, 2125-2143 (2015)

ST0Z ‘€T |udy uo weyng Jo AseAun e /B10'S [euinolpaoxo'seiuw//:dny woJy pepeojumod


http://mnras.oxfordjournals.org/

