106 research outputs found

    A predictive safety filter for learning-based racing control

    Full text link
    The growing need for high-performance controllers in safety-critical applications like autonomous driving has been motivating the development of formal safety verification techniques. In this paper, we design and implement a predictive safety filter that is able to maintain vehicle safety with respect to track boundaries when paired alongside any potentially unsafe control signal, such as those found in learning-based methods. A model predictive control (MPC) framework is used to create a minimally invasive algorithm that certifies whether a desired control input is safe and can be applied to the vehicle, or that provides an alternate input to keep the vehicle in bounds. To this end, we provide a principled procedure to compute a safe and invariant set for nonlinear dynamic bicycle models using efficient convex approximation techniques. To fully support an aggressive racing performance without conservative safety interventions, the safe set is extended in real-time through predictive control backup trajectories. Applications for assisted manual driving and deep imitation learning on a miniature remote-controlled vehicle demonstrate the safety filter's ability to ensure vehicle safety during aggressive maneuvers

    Evaluation of fatty acid metabolism and innate immunity interactions between commercial broiler, F1 layer × broiler cross and commercial layer strains selected for different growth potentials

    Get PDF
    Background: The broiler industry has undergone intense genetic selection over the past 50 yr. resulting in improvements for growth and feed efficiency, however, significant variation remains for performance and growth traits. Production improvements have been coupled with unfavourable metabolic consequences, including immunological trade-offs for growth, and excess fat deposition. To determine whether interactions between fatty acid (FA) metabolism and innate immunity may be associated with performance variations commonly seen within commercial broiler flocks, total carcass lipid %, carcass and blood FA composition, as well as genes involved with FA metabolism, immunity and cellular stress were investigated in male birds of a broiler strain, layer strain and F1 layer × broiler cross at d 14 post hatch. Heterophil: lymphocyte ratios, relative organ weights and bodyweight data were also compared. Results: Broiler bodyweight (n = 12) was four times that of layers (n = 12) by d 14 and had significantly higher carcass fat percentage compared to the cross (n = 6; P = 0.002) and layers (P = 0.017) which were not significantly different from each other (P = 0.523). The carcass and whole blood FA analysis revealed differences in the FA composition between the three groups indicating altered FA metabolism, despite all being raised on the same diet. Genes associated with FA synthesis and β-oxidation were upregulated in the broilers compared to the layers indicating a net overall increase in FA metabolism, which may be driven by the larger relative liver size as a percentage of bodyweight in the broilers. Genes involved in innate immunity such as TLR2 and TLR4, as well as organelle stress indicators ERN1 and XBP1 were found to be non-significant, with the exception of high expression levels of XBP1 in layers compared to the cross and broilers. Additionally there was no difference in heterophil: lymphocytes between any of the birds. Conclusions: The results provide evidence that genetic selection may be associated with altered metabolic processes between broilers, layers and their F1 cross. Whilst there is no evidence of interactions between FA metabolism, innate immunity or cellular stress, further investigations at later time points as growth and fat deposition increase would provide useful information as to the effects of divergent selection on key metabolic and immunological processes.Nicky-Lee Willson, Rebecca E.A. Forder, Rick G. Tearle, Greg S. Nattrass, Robert J. Hughes, and Philip I. Hyn

    Whole genome sequencing increases molecular diagnostic yield compared with current diagnostic testing for inherited retinal disease

    Get PDF
    Abstract not availableJamie M. Ellingford, Stephanie Barton, Sanjeev Bhaskar, Simon G. Williams, Panagiotis I. Sergouniotis, James O, Sullivan, Janine A. Lamb, Rahat Perveen, Georgina Hall, William G. Newman, Paul N. Bishop, Stephen A. Roberts, Rick Leach, Rick Tearle, Stuart Bayliss, Simon C. Ramsden, Andrea H. Nemeth, Graeme C.M. Blac

    Mapping an atlas of tissue-specific drosophila melanogaster metabolomes by high resolution mass spectrometry

    Get PDF
    Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes

    The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila

    Get PDF
    The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired

    Designing a HER2/neu promoter to drive α1,3galactosyltransferase expression for targeted anti-αGal antibody-mediated tumor cell killing

    Get PDF
    INTRODUCTION: Our goal was to specifically render tumor cells susceptible to natural cytolytic anti-αGal antibodies by using a murine α1,3galactosyltransferase (mαGalT) transgene driven by a designed form of HER2/neu promoter (pNeu), the transcription of which is frequently observed to be above basal in breast tumors. Indeed, the αGalT activity that promotes Galα1,3Galβ1,4GlcNAc-R (αGal) epitope expression has been mutationally disrupted during the course of evolution, starting from Old World primates, and this has led to the counter-production of large amounts of cytotoxic anti-αGal antibodies in recent primates, including man. METHOD: Expression of the endogenous c-erbB-2 gene was investigated in various cell lines by northern blotting. A mαGalT cDNA was constructed into pcDNA3 vector downstream of the original CMV promoter (pCMV/mαGalT) and various forms of pNeu were prepared by PCR amplification and inserted in the pCMV/mαGalT construct upstream of the mαGalT cDNA, in the place of the CMV promoter. These constructs were transferred into HEK-293 control and breast tumor cell lines. Stably transfected cells were analyzed by northern blotting for their expression of αGalT and c-erbB-2, and by flow cytometry for their binding with fluorescein isothiocyanate-conjugated Griffonia simplicifolia/isolectin B4. RESULTS: We show that expression of the mαGalT was up- or down-modulated according to the level of endogenous pNeu activity and the particular form of constructed pNeu. Among several constructs, two particular forms of the promoter, pNeu250 containing the CCAAT box and the PEA3 motif adjacent to the TATAA box, and pNeu664, which has three additional PEA3 motifs upstream of the CCAAT box, were found to promote differential αGalT expression. CONCLUSION: Our results strengthen current concepts about the crucial role played by the proximal PEA3 motif of pNeu, and may represent a novel therapeutic approach for the development of targeted transgene expression

    Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees

    Get PDF
    Significance Contributions of rare variants to common and complex traits such as type 2 diabetes (T2D) are difficult to measure. This paper describes our results from deep whole-genome analysis of large Mexican-American pedigrees to understand the role of rare-sequence variations in T2D and related traits through enriched allele counts in pedigrees. Our study design was well-powered to detect association of rare variants if rare variants with large effects collectively accounted for large portions of risk variability, but our results did not identify such variants in this sample. We further quantified the contributions of common and rare variants in gene expression profiles and concluded that rare expression quantitative trait loci explain a substantive, but minor, portion of expression heritability.</jats:p

    Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    Get PDF
    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency
    • …
    corecore