29 research outputs found

    Quantitative model of R-loop forming structures reveals a novel level of RNA–DNA interactome complexity

    Get PDF
    R-loop is the structure co-transcriptionally formed between nascent RNA transcript and DNA template, leaving the non-transcribed DNA strand unpaired. This structure can be involved in the hyper-mutation and dsDNA breaks in mammalian immunoglobulin (Ig) genes, oncogenes and neurodegenerative disease related genes. R-loops have not been studied at the genome scale yet. To identify the R-loops, we developed a computational algorithm and mapped R-loop forming sequences (RLFS) onto 66 803 sequences defined by UCSC as ‘known’ genes. We found that ∼59% of these transcribed sequences contain at least one RLFS. We created R-loopDB (http://rloop.bii.a-star.edu.sg/), the database that collects all RLFS identified within over half of the human genes and links to the UCSC Genome Browser for information integration and visualisation across a variety of bioinformatics sources. We found that many oncogenes and tumour suppressors (e.g. Tp53, BRCA1, BRCA2, Kras and Ptprd) and neurodegenerative diseases related genes (e.g. ATM, Park2, Ptprd and GLDC) could be prone to significant R-loop formation. Our findings suggest that R-loops provide a novel level of RNA–DNA interactome complexity, playing key roles in gene expression controls, mutagenesis, recombination process, chromosomal rearrangement, alternative splicing, DNA-editing and epigenetic modifications. RLFSs could be used as a novel source of prospective therapeutic targets

    The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins

    Get PDF
    The Ku-binding motif (KBM) is a short peptide module first identified in APLF that we now show is also present in Werner syndrome protein (WRN) and in Modulator of retrovirus infection homologue (MRI). We also identify a related but functionally distinct motif in XLF, WRN, MRI and PAXX, which we denote the XLF-like motif. We show that WRN possesses two KBMs; one at the N terminus next to the exonuclease domain and one at the C terminus next to an XLF-like motif. We reveal that the WRN C-terminal KBM and XLF-like motif function cooperatively to bind Ku complexes and that the N-terminal KBM mediates Ku-dependent stimulation of WRN exonuclease activity. We also show that WRN accelerates DSB repair by a mechanism requiring both KBMs, demonstrating the importance of WRN interaction with Ku. These data define a conserved family of KBMs that function as molecular tethers to recruit and/or stimulate enzymes during NHEJ

    Highly Precise and Developmentally Programmed Genome Assembly in Paramecium Requires Ligase IV–Dependent End Joining

    Get PDF
    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics

    Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    Get PDF
    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues

    Ku Regulates the Non-Homologous End Joining Pathway Choice of DNA Double-Strand Break Repair in Human Somatic Cells

    Get PDF
    The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic integrity and viability for all organisms. Mammals have evolved at least two genetically discrete ways to mediate DNA DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). In mammalian cells, most DSBs are preferentially repaired by NHEJ. Recent work has demonstrated that NHEJ consists of at least two sub-pathways—the main Ku heterodimer-dependent or “classic” NHEJ (C-NHEJ) pathway and an “alternative” NHEJ (A-NHEJ) pathway, which usually generates microhomology-mediated signatures at repair junctions. In our study, recombinant adeno-associated virus knockout vectors were utilized to construct a series of isogenic human somatic cell lines deficient in the core C-NHEJ factors (Ku, DNA-PKcs, XLF, and LIGIV), and the resulting cell lines were characterized for their ability to carry out DNA DSB repair. The absence of DNA-PKcs, XLF, or LIGIV resulted in cell lines that were profoundly impaired in DNA DSB repair activity. Unexpectedly, Ku86-null cells showed wild-type levels of DNA DSB repair activity that was dominated by microhomology joining events indicative of A-NHEJ. Importantly, A-NHEJ DNA DSB repair activity could also be efficiently de-repressed in LIGIV-null and DNA-PKcs-null cells by subsequently reducing the level of Ku70. These studies demonstrate that in human cells C-NHEJ is the major DNA DSB repair pathway and they show that Ku is the critical C-NHEJ factor that regulates DNA NHEJ DSB pathway choice

    V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining

    No full text
    The immune system is the site of intense DNA damage/modification, which occur during the development and maturation of B and T lymphocytes. V(D)J recombination is initiated by the Rag1 and Rag2 proteins and the formation of a DNA double-strand break (DNA dsb). This DNA lesion is repaired through the use of the non-homologous end-joining (NHEJ) pathway, several factors of which have been identified through the survey of immunodeficient conditions in humans and mice. Upon antigenic recognition in secondary lymphoid organs, mature B cells further diversify their repertoire through class switch recombination (CSR). CSR is a region-specific rearrangement process triggered by the activation-induced cytidine deaminase factor and also proceeds through the introduction of DNA dsb. However, unlike V(D)J recombination, CSR does not rely strictly on NHEJ for the repair of the DNA lesion. Instead, CSR, but not V(D)J recombination, requires the major factors of the DNA damage response. V(D)J recombination and CSR thus represent an interesting paradigm to study the regulation among the various DNA repair pathways

    Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination.

    No full text
    Activation-induced cytidine deaminase (AID) is required for somatic hypermutation and immunoglobulin class switching in activated B cells. Because AID has no known target-site specificity, there have been efforts to identify non-immunoglobulin AID targets. We show here that AID acts promiscuously, generating widespread DNA double-strand breaks (DSBs), genomic instability and cytotoxicity in B cells with less homologous recombination ability. We demonstrate that the homologous-recombination factor XRCC2 suppressed AID-induced off-target DSBs, promoting B cell survival. Finally, we suggest that aberrations that affect human chromosome 7q36, including XRCC2, correlate with genomic instability in B cell cancers. Our findings demonstrate that AID has promiscuous genomic DSB-inducing activity, identify homologous recombination as a safeguard against off-target AID action, and have implications for genomic instability in B cell cancers
    corecore