188 research outputs found

    ‘X Journalism’. Exploring journalism’s diverse meanings through the names we give it

    Get PDF
    In this article we propose the notion of X Journalism as an observational tool and concept. It owes its existence to a simple observation: the evolution of journalism is accompanied by the emergence of ever-new journalism-related terms, i.e. combinations of the word ‘journalism’ with a particular modifying term that represents and signals a certain specificity and novelty. Examples include ‘robot journalism’, ‘foundation- funded journalism’, ‘cross-border journalism’, or ‘solutions journalism’ – just to name a few. To date, we have collected and mapped 166 X journalisms and have ‘crowd- categorized’ them into clusters according to the different aspects they refer to. We explore X Journalism as a concept, present our mapping, and show how it can help to cope with journalism’s increasing complexity, grasp the diversity of the field, trace its constant evolution, as well as identify patterns and interrelations between these different movements and occurrences. Through a test case of audience-related X journalisms we demonstrate an empirical application before illustrating the theoretical compatibility of X Journalism and suggesting a research agenda that highlights potentials for X Journalism-driven studies.<br/

    Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44)†

    Get PDF
    Background We evaluated the pathological complete response (pCR) rate after neoadjuvant epirubicin, (E) cyclophosphamide (C) and docetaxel containing chemotherapy with and without the addition of bevacizumab in patients with triple-negative breast cancer (TNBC). Patients and methods Patients with untreated cT1c-4d TNBC represented a stratified subset of the 1948 participants of the HER2-negative part of the GeparQuinto trial. Patients were randomized to receive four cycles EC (90/600 mg/m2; q3w) followed by four cycles docetaxel (100 mg/m2; q3w) each with or without bevacizumab (15 mg/kg; q3w) added to chemotherapy. Results TNBC patients were randomized to chemotherapy without (n = 340) or with bevacizumab (n = 323). pCR (ypT0 ypN0, primary end point) rates were 27.9% without and 39.3% with bevacizumab (P = 0.003). According to other pCR definitions, the addition of bevacizumab increased the pCR rate from 30.9% to 41.8% (ypT0 ypN0/+; P = 0.004), 36.2% to 46.4% (ypT0/is ypN0/+; P = 0.009) and 32.9% to 43.3% (ypT0/is ypN0; P = 0.007). Bevacizumab treatment [OR 1.73, 95% confidence interval (CI) 1.23-2.42; P = 0.002], lower tumor stage (OR 2.38, 95% CI 1.24-4.54; P = 0.009) and grade 3 tumors (OR 1.68, 95% CI 1.14-2.48; P = 0.009) were confirmed as independent predictors of higher pCR in multivariate logistic regression analysis. Conclusions The addition of bevacizumab to chemotherapy in TNBC significantly increases pCR rate

    Automated analysis of digital fundus autofluorescence images of geographic atrophy in advanced age-related macular degeneration using confocal scanning laser ophthalmoscopy (cSLO)

    Get PDF
    BACKGROUND: Fundus autofluorescence (AF) imaging using confocal scanning laser ophthalmoscopy (cSLO) provides an accurate delineation of areas of geographic atrophy (GA). Automated computer-assisted methods for detecting and removing interfering vessels are needed to support the GA quantification process in longitudinal studies and in reading centres. METHODS: A test tool was implemented that uses region-growing techniques to segment GA areas. An algorithm for illuminating shadows can be used to process low-quality images. Agreement between observers and between three different methods was evaluated by two independent readers in a pilot study. Agreement and objectivity were assessed using the Bland-Altman approach. RESULTS: The new method (C) identifies vascular structures that interfere with the delineation of GA. Results are comparable to those of two commonly used procedures (A, B), with a mean difference between C and A of -0.67 mm(2 )(95% CI [-0.99, -0.36]), between B and A of -0.81 mm(2), (95% CI [-1.08, -0.53]), and between C and B of 0.15 mm(2 )(95% CI [-0.12, 0.41]). Objectivity of a method is quantified by the mean difference between observers: A 0.30 mm(2 )(95% CI [0.02, 0.57]), B -0.11 mm(2 )(95% CI [-0.28, 0.10]), and C 0.12 mm(2 )(95% CI [0.02, 0.22]). CONCLUSION: The novel procedure is comparable with regard to objectivity and inter-reader agreement to established methods of quantifying GA. It considerably speeds up the lengthy measurement process in AF with well defined GA zones

    PTTG1 Attenuates Drug-Induced Cellular Senescence

    Get PDF
    As PTTG1 (pituitary tumor transforming gene) abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1−/−) exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1−/− senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001). p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1−/− cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1−/− cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1−/− HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1−/− tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes

    BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection

    Get PDF
    Background Clostridium difficile infection (CDI) is a major cause of hospital-acquired diarrhea. Secondary bile acids were shown to confer resistance to colonization by C. difficile. 7 alpha-dehydroxylation is a key step in transformation of primary to secondary bile acids and required genes have been located in a single bile acid-inducible (bai) operon in C. scindens as well as in C. hiranonis, two Clostridium sp. recently reported to protect against C. difficile colonization. Aim To analyze baiCD gene abundance in C. difficile positive and negative fecal samples. Material & methods A species-specific qPCR for detecting baiCD genes was established. Fecal samples of patients with CDI, asymptomatic toxigenic C. difficile colonization (TCD), non-toxigenic C. difficile colonization (NTCD), of C. difficile negative (NC) patients, and of two patients before and after fecal microbiota transplantation (FMT) for recurrent CDI (rCDI) were tested for the presence of the baiCD genes. Results The prevalence of the baiCD gene cluster was significantly higher in C. difficile negative fecal samples than in samples of patients diagnosed with CDI (72.5% (100/138) vs. 35.9% (23/64;p<0.0001). No differences in baiCD gene cluster prevalence were seen between NC and NTCD or NC and TCD samples. Both rCDI patients were baiCD-negative at baseline, but one of the two patients turned positive after successful FMT from a baiCD-positive donor. Conclusion Fecal samples of CDI patients are less frequently baiCD-positive than samples from asymptomatic carriers or C. difficile-negative individuals. Furthermore, we present a case of baiCD positivity observed after successful FMT for rCDI

    A clinically relevant gene signature in triple negative and basal-like breast cancer

    Get PDF
    Introduction: Current prognostic gene expression profiles for breast cancer mainly reflect proliferation status and are most useful in ER-positive cancers. Triple negative breast cancers (TNBC) are clinically heterogeneous and prognostic markers and biology-based therapies are needed to better treat this disease. Methods: We assembled Affymetrix gene expression data for 579 TNBC and performed unsupervised analysis to define metagenes that distinguish molecular subsets within TNBC. We used n = 394 cases for discovery and n = 185 cases for validation. Sixteen metagenes emerged that identified basal-like, apocrine and claudin-low molecular subtypes, or reflected various non-neoplastic cell populations, including immune cells, blood, adipocytes, stroma, angiogenesis and inflammation within the cancer. The expressions of these metagenes were correlated with survival and multivariate analysis was performed, including routine clinical and pathological variables. Results: Seventy-three percent of TNBC displayed basal-like molecular subtype that correlated with high histological grade and younger age. Survival of basal-like TNBC was not different from non basal-like TNBC. High expression of immune cell metagenes was associated with good and high expression of inflammation and angiogenesis-related metagenes were associated with poor prognosis. A ratio of high B-cell and low IL-8 metagenes identified 32% of TNBC with good prognosis (hazard ratio (HR) 0.37, 95% CI 0.22 to 0.61; P < 0.001) and was the only significant predictor in multivariate analysis including routine clinicopathological variables. Conclusions: We describe a ratio of high B-cell presence and low IL-8 activity as a powerful new prognostic marker for TNBC. Inhibition of the IL-8 pathway also represents an attractive novel therapeutic target for this disease

    The Role of Muscle microRNAs in Repairing the Neuromuscular Junction

    Get PDF
    microRNAs have been implicated in mediating key aspects of skeletal muscle development and responses to diseases and injury. Recently, we demonstrated that a synaptically enriched microRNA, miR-206, functions to promote maintenance and repair of the neuromuscular junction (NMJ); in mutant mice lacking miR-206, reinnervation is impaired following nerve injury and loss of NMJs is accelerated in a mouse model of amyotrophic lateral sclerosis (ALS). Here, we asked whether other microRNAs play similar roles. One attractive candidate is miR-133b because it is in the same transcript that encodes miR-206. Like miR-206, miR-133b is concentrated near NMJs and induced after denervation. In miR-133b null mice, however, NMJ development is unaltered, reinnervation proceeds normally following nerve injury, and disease progression is unaffected in the SOD1(G93A) mouse model of ALS. To determine if miR-206 compensates for the loss of miR-133b, we generated mice lacking both microRNAs. The phenotype of these double mutants resembled that of miR-206 single mutants. Finally, we used conditional mutants of Dicer, an enzyme required for the maturation of most microRNAs, to generate mice in which microRNAs were depleted from skeletal muscle fibers postnatally, thus circumventing a requirement for microRNAs in embryonic muscle development. Reinnervation of muscle fibers following injury was impaired in these mice, but the defect was similar in magnitude to that observed in miR-206 mutants. Together, these results suggest that miR-206 is the major microRNA that regulates repair of the NMJ following nerve injury.National Institutes of Health (U.S.) (NIH grant R01AG032322)National Institute of Neurological Disorders and Stroke (U.S.) (NRSA Postdoctoral Fellowship from NINDS/NIH)Ruth K. Broad Biomedical Research Foundation (Fellowship)McGovern Institute for Brain Research at MIT (Poitras Center for Affective Disorders Research

    Circadian Clocks in Mouse and Human CD4+ T Cells

    Get PDF
    Though it has been shown that immunological functions of CD4+ T cells are time of day-dependent, the underlying molecular mechanisms remain largely obscure. To address the question whether T cells themselves harbor a functional clock driving circadian rhythms of immune function, we analyzed clock gene expression by qPCR in unstimulated CD4+ T cells and immune responses of PMA/ionomycin stimulated CD4+ T cells by FACS analysis purified from blood of healthy subjects at different time points throughout the day. Molecular clock as well as immune function was further analyzed in unstimulated T cells which were cultured in serum-free medium with circadian clock reporter systems. We found robust rhythms of clock gene expression as well as, after stimulation, IL-2, IL-4, IFN-γ production and CD40L expression in freshly isolated CD4+ T cells. Further analysis of IFN-γ and CD40L in cultivated T cells revealed that these parameters remain rhythmic in vitro. Moreover, circadian luciferase reporter activity in CD4+ T cells and in thymic sections from PER2::LUCIFERASE reporter mice suggest that endogenous T cell clock rhythms are self-sustained under constant culture conditions. Microarray analysis of stimulated CD4+ T cell cultures revealed regulation of the NF-κB pathway as a candidate mechanism mediating circadian immune responses. Collectively, these data demonstrate for the first time that CD4+ T cell responses are regulated by an intrinsic cellular circadian oscillator capable of driving rhythmic CD4+ T cell immune responses
    • …
    corecore