37 research outputs found

    Renormalized thermodynamics from the 2PI effective action

    Full text link
    High-temperature resummed perturbation theory is plagued by poor convergence properties. The problem appears for theories with bosonic field content such as QCD, QED or scalar theories. We calculate the pressure as well as other thermodynamic quantities at high temperature for a scalar one-component field theory, solving a three-loop 2PI effective action numerically without further approximations. We present a detailed comparison with the two-loop approximation. One observes a strongly improved convergence behavior as compared to perturbative approaches. The renormalization employed in this work extends previous prescriptions, and is sufficient to determine all counterterms required for the theory in the symmetric as well as the spontaneously broken phase.Comment: 20 pages, 7 figures; PRD version, references added, very minor change

    A relativistic parton cascade with radiation

    Get PDF
    We consider the evolution of a parton system which is formed at the central rapidity region just after an ultrarelativistic heavy ion collision. The evolution of the system, which is composed of gluons, quarks and antiquarks, is described by a relativistic Boltzmann equations with collision terms including radiation and retardation effects. The equations are solved by the test particle method using Monte-Carlo sampling. Our simulations do not show any evidence of kinetic equilibration, unless the cross sections are artificially increased to unrealistically large values.Comment: 14 pages, 4 figure

    Ward Identities for the 2PI effective action in QED

    Get PDF
    We study the issue of symmetries and associated Ward-like identities in the context of two-particle-irreducible (2PI) functional techniques for abelian gauge theories. In the 2PI framework, the nn-point proper vertices of the theory can be obtained in various different ways which, although equivalent in the exact theory, differ in general at finite approximation order. We derive generalized (2PI) Ward identities for these various nn-point functions and show that such identities are exactly satisfied at any approximation order in 2PI QED. In particular, we show that 2PI-resummed vertex functions, i.e. field-derivatives of the so-called 2PI-resummed effective action, exactly satisfy standard Ward identities. We identify another set of nn-point functions in the 2PI framework which exactly satisfy the standard Ward identities at any approximation order. These are obtained as field-derivatives of the two-point function \bcG^{-1}[\phi], which defines the extremum of the 2PI effective action. We point out that the latter is not constrained by the underlying symmetry. As a consequence, the well-known fact that the corresponding gauge-field polarization tensor is not transverse in momentum space for generic approximations does not constitute a violation of (2PI) Ward identities. More generally, our analysis demonstrates that approximation schemes based on 2PI functional techniques respect all the Ward identities associated with the underlying abelian gauge symmetry. Our results apply to arbitrary linearly realized global symmetries as well.Comment: 33 pages, 2 figure

    Two-particle irreducible effective action approach to nonlinear current conserving approximations in driven systems

    Full text link
    Using closed-time path two-particle irreducible coarse-grained effective action (CTP 2PI CGEA) techniques, we study the response of an open interacting electronic system to time-dependent external electromagnetic fields. We show that the CTP 2PI CGEA is invariant under a simultaneous gauge transformation of the external field and the full Schwinger-Keldysh propagator, and that this property holds even when the loop expansion of the CTP 2PI CGEA is truncated at arbitrary order. The effective action approach provides a systematic way of calculating the propagator and response functions of the system, via the Schwinger-Dyson equation and the Bethe-Salpeter equations, respectively. We show that, due to the invariance of the CTP 2PI CGEA under external gauge transformations, the response functions calculated from it satisfy the Ward-Takahashi hierarchy, thus warranting the conservation of the electronic current beyond the expectation value level. We also clarify the connection between nonlinear response theory and the WT hierarchy, and discuss an example of an ad hoc approximation that violate it. These findings may be useful in the study of current fluctuations in correlated electronic pumping devices.Comment: 30 pages. Accepted for publication in JPC

    On the microscopic dynamics of DCC formation

    Get PDF
    The dynamics of the pion field after a quench is studied in the framework of the linear sigma model. Our aim is to determine to what extent the amplified pion field resembles the DCC picture originally proposed in the early '90s. We present the result of a computer experiment where, among other things, we study in detail the correlation between isospin orientations of the distinct modes of the field. We show that this correlation is absent. In a sense, the distinct modes behave as distinct DCCs. The implications of this observation are discussed.Comment: 19 pages, Latex2e, 7 figures in EPS, uses (included) boldgreek.sty and standard epsf package

    Photon Physics in Heavy Ion Collisions at the LHC

    Full text link
    Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One figure added in chapter 5 (comparison with PHENIX data). Some figures and correponding text corrected in chapter 6 (off-chemical equilibrium thermal photon rates). Some figures modified in chapter 7 (off-chemical equilibrium photon rates) and comparison with PHENIX data adde

    Out-of-equilibrium electromagnetic radiation

    Full text link
    We derive general formulas for photon and dilepton production rates from an arbitrary non-equilibrated medium from first principles in quantum field theory. At lowest order in the electromagnetic coupling constant, these relate the rates to the unequal-time in-medium photon polarization tensor and generalize the corresponding expressions for a system in thermodynamic equilibrium. We formulate the question of electromagnetic radiation in real time as an initial value problem and consistently describe the virtual electromagnetic dressing of the initial state. In the limit of slowly evolving systems, we recover known expressions for the emission rates and work out the first correction to the static formulas in a systematic gradient expansion. Finally, we discuss the possible application of recently developed techniques in non-equilibrium quantum field theory to the problem of electromagnetic radiation. We argue, in particular, that the two-particle-irreducible (2PI) effective action formalism provides a powerful resummation scheme for the description of multiple scattering effects, such as the Landau-Pomeranchuk-Migdal suppression recently discussed in the context of equilibrium QCD.Comment: 34 pages, 9 figures, uses JHEP3.cl

    Thermal Photons in Strong Interactions

    Full text link
    A brief survey is given on the current status of evaluating thermal production of photons from a strongly interacting medium. Emphasis is put on recent progress in assessing equilibrium emission rates in both hadronic and quark-gluon matter. We also give an update on the status of comparing theoretical calculations with experimental data from heavy-ion collisions at the SPS, as well as prospects for RHIC. Finally, applications of photon rate calculations to colorsuperconducting quark matter are discussed.Comment: Brief Review for Mod. Phys. Lett A, 15 pages latex incl. 12 ps/eps figs and style file ws-mpla.cl

    Study of the eightfold degeneracy with a standard ÎČ\beta-Beam and a Super-Beam facility

    Full text link
    The study of the eightfold degeneracy at a neutrino complex that includes a standard ÎČ\beta-Beam and a Super-Beam facility is presented for the first time in this paper. The scenario where the neutrinos are sent toward a Megaton water Cerenkov detector located at the Fr\'{e}jus laboratory (baseline 130 Km) is exploited. The performance in terms of sensitivity for measuring the continuous (Ξ13\theta_{13} and ÎŽ\delta) and discrete (sign[Δm232]{sign} [ \Delta m^2_{23} ] and sign[tan⁥(2Ξ23)]{sign} [\tan (2\theta_{23}) ]) oscillation parameters for the ÎČ\beta-Beam and Super-Beam alone, and for their combination has been studied. A brief review of the present uncertainties on the neutrino and antineutrino cross-sections is also reported and their impact on the discovery potential discussed
    corecore