519 research outputs found

    Metallic proximity effect in ballistic graphene with resonant scatterers

    Full text link
    We study the effect of resonant scatterers on the local density of states in a rectangular graphene setup with metallic leads. We find that the density of states in a vicinity of the Dirac point acquires a strong position dependence due to both metallic proximity effect and impurity scattering. This effect may prevent uniform gating of weakly-doped samples. We also demonstrate that even a single-atom impurity may essentially alter electronic states at low-doping on distances of the order of the sample size from the impurity.Comment: 9 pages, 2 figure

    Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite

    Full text link
    We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a "dead" surface layer is present that is only absorbing photons but does not contribute to the scattering signal.Comment: to appear in Phys. Rev.

    Ballistic charge transport in chiral-symmetric few-layer graphene

    Full text link
    A transfer matrix approach to study ballistic charge transport in few-layer graphene with chiral-symmetric stacking configurations is developed. We demonstrate that the chiral symmetry justifies a non-Abelian gauge transformation at the spectral degeneracy point (zero energy). This transformation proves the equivalence of zero-energy transport properties of the multilayer to those of the system of uncoupled monolayers. Similar transformation can be applied in order to gauge away an arbitrary magnetic field, weak strain, and hopping disorder in the bulk of the sample. Finally, we calculate the full-counting statistics at arbitrary energy for different stacking configurations. The predicted gate-voltage dependence of conductance and noise can be measured in clean multilayer samples with generic metallic leads.Comment: 6 pages, 5 figures; EPL published versio

    Ballistic transport in disordered graphene

    Full text link
    An analytic theory of electron transport in disordered graphene in a ballistic geometry is developed. We consider a sample of a large width W and analyze the evolution of the conductance, the shot noise, and the full statistics of the charge transfer with increasing length L, both at the Dirac point and at a finite gate voltage. The transfer matrix approach combined with the disorder perturbation theory and the renormalization group is used. We also discuss the crossover to the diffusive regime and construct a ``phase diagram'' of various transport regimes in graphene.Comment: 23 pages, 10 figure

    Charge transport in graphene with resonant scatterers

    Full text link
    The full counting statistics for the charge transport through an undoped graphene sheet in the presence of strong potential impurities is studied. Treating the scattering off the impurity in the s-wave approximation, we calculate the impurity correction to the cumulant generating function. This correction is universal provided the impurity strength is tuned to a resonant value. In particular, the conductance of the sample acquires a correction of 16e^2/(pi^2 h) per resonant impurity.Comment: 11 pages, 6 figures; published version, appendix with technical details adde

    Impact of sequence variation in the ul128 locus on production of human cytomegalovirus in fibroblast and epithelial cells

    Get PDF
    The human cytomegalovirus (HCMV) virion envelope contains a complex consisting of glycoproteins gH and gL plus proteins encoded by the UL128 locus (UL128L): pUL128, pUL130, and pUL131A. UL128L is necessary for efficient infection of myeloid, epithelial, and endothelial cells but limits replication in fibroblasts. Consequently, disrupting mutations in UL128L are rapidly selected when clinical isolates are cultured in fibroblasts. In contrast, bacterial artificial chromosome (BAC)-cloned strains TB40-BAC4, FIX, and TR do not contain overt disruptions in UL128L, yet no virus reconstituted from them has been reported to acquire mutations in UL128L in vitro. We performed BAC mutagenesis and reconstitution experiments to test the hypothesis that these strains contain subtle mutations in UL128L that were acquired during passage prior to BAC cloning. Compared to strain Merlin containing wild-type UL128L, all three strains produced higher yields of cell-free virus. Moreover, TB40-BAC4 and FIX spread cell to cell more rapidly than wild-type Merlin in fibroblasts but more slowly in epithelial cells. The differential growth properties of TB40-BAC4 and FIX (but not TR) were mapped to single-nucleotide substitutions in UL128L. The substitution in TB40-BAC4 reduced the splicing efficiency of UL128, and that in FIX resulted in an amino acid substitution in UL130. Introduction of these substitutions into Merlin dramatically increased yields of cell-free virus and increased cell-to-cell spread in fibroblasts but reduced the abundance of pUL128 in the virion and the efficiency of epithelial cell infection. These substitutions appear to represent mutations in UL128L that permit virus to be propagated in fibroblasts while retaining epithelial cell tropism

    Transverse component of the magnetic field in the solar photosphere observed by Sunrise

    Full text link
    We present the first observations of the transverse component of photospheric magnetic field acquired by the imaging magnetograph Sunrise/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. Their rate of occurrence is 1-2 orders of magnitude larger than values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point in their evolution. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).Comment: Accepted for the Sunrise Special Issue of ApJ

    Comparison of the stand-alone Cox-Maze IV procedure to the concomitant Cox-Maze IV and mitral valve procedure for atrial fibrillation

    Get PDF
    BACKGROUND: The majority of patients undergoing surgical ablation for atrial fibrillation (AF) worldwide receive a concomitant mitral valve (MV) procedure. This study compared outcomes of the Cox-Maze IV (CMIV) in patients with lone AF to those with AF and MV disease. METHODS: A retrospective review of 335 patients receiving either a stand-alone CMIV for AF (n=151) or a CMIV with a MV procedure (n=184) was performed from January 2002 through December of 2012. Data were obtained at 3, 6, 12, 24, and 48 months and patients were evaluated for recurrence of AF. Twenty-four preoperative and perioperative variables were evaluated to identify predictors of AF recurrence at one year. RESULTS: The two groups differed in that stand-alone CMIV patients were younger, had AF of longer duration and had more failed catheter ablations, while patients with AF and MV disease had larger left atria and worse New York Heart Association class (P≤0.001). Operative mortality was higher in the concomitant MV group (1% vs. 5%, P=0.015). Freedom from AF and antiarrhythmic drugs at 12 and 24 months were similar between the two groups (73% and 76% at 12 months; 77% vs. 78% at 24 months). Predictors of recurrence included failure to use a box-lesion to isolate the pulmonary veins and posterior left atria, early recurrence of atrial tachyarrhythmias (ATAs) and the presence of a preoperative pacemaker (P=0.001). CONCLUSIONS: The efficacy of the CMIV procedure was similar in patients with and without co-existent MV pathology. Patients receiving a concomitant CMIV and MV procedure represented an older and sicker patient population and had higher mortality rates than those receiving a stand-alone CMIV procedure

    Fully resolved quiet-Sun magnetic flux tube observed with the Sunrise IMaX instrument

    Full text link
    Until today, the small size of magnetic elements in quiet Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope Sunrise with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid- to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.Comment: Accepted for publication in The Astrophysical Journal Letters on Aug 11 201
    • …
    corecore