29 research outputs found

    TGF-ß induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression.

    Get PDF
    Abstract TGF-ß/Activin induces epithelial-to-mesenchymal transition (EMT) and stemness in pancreatic ductal adenocarcinoma (PDAC). However, the microRNAs (miRNAs) regulated during this response have remained yet undetermined. Here, we show that TGF-ß transcriptionally induces MIR100HG lncRNA, containing miR-100, miR-125b and let-7a in its intron, via SMAD2/3. Interestingly, we find that although the pro-tumourigenic miR-100 and miR-125b accordingly increase, the amount of anti-tumourigenic let-7a is unchanged, as TGF-ß also induces LIN28B inhibiting its maturation. Notably, we demonstrate that inactivation of miR-125b or miR-100 affects the TGF-ß-mediated response indicating that these miRNAs are important TGF-ß effectors. We integrated AGO2-RIP-seq with RNA-seq to identify the global regulation exerted by these miRNAs in PDAC cells. Transcripts targeted by miR-125b and miR-100 significantly overlap and mainly inhibit p53 and cell-cell junctions’ pathways. Together, we uncover that TGF-ß induces an lncRNA, whose encoded miRNAs, miR-100, let-7a and miR-125b, play opposing roles in controlling PDAC tumourigenesis

    CAMTA1 is a novel tumour suppressor regulated by miR-9/9(*) in glioblastoma stem cells

    Full text link
    Cancer stem cells or cancer initiating cells are believed to contribute to cancer recurrence after therapy. MicroRNAs (miRNAs) are short RNA molecules with fundamental roles in gene regulation. The role of miRNAs in cancer stem cells is only poorly understood. Here, we report miRNA expression profiles of glioblastoma stem cell-containing CD133(+) cell populations. We find that miR-9, miR-9(*) (referred to as miR-9/9(*)), miR-17 and miR-106b are highly abundant in CD133(+) cells. Furthermore, inhibition of miR-9/9(*) or miR-17 leads to reduced neurosphere formation and stimulates cell differentiation. Calmodulin-binding transcription activator 1 (CAMTA1) is a putative transcription factor, which induces the expression of the anti-proliferative cardiac hormone natriuretic peptide A (NPPA). We identify CAMTA1 as an miR-9/9(*) and miR-17 target. CAMTA1 expression leads to reduced neurosphere formation and tumour growth in nude mice, suggesting that CAMTA1 can function as tumour suppressor. Consistently, CAMTA1 and NPPA expression correlate with patient survival. Our findings could provide a basis for novel strategies of glioblastoma therapy

    Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG

    No full text
    Aberrant post-transcriptional regulation by microRNAs (miRNAs) has been shown to be involved in the pathogenesis of acute myeloid leukemia (AML). In a previous study, we performed a large functional screen using a retroviral barcoded miRNA expression library. Here, we report that overexpression of miR-9/9* in myeloid 32D cell line (32D-miR-9/9*) had profound impact on granulocyte colony-stimulating factor-induced differentiation. Further in vitro studies showed that enforced expression of miR-9/9* blocked normal neutrophil development in 32D and in primary murine lineage-negative bone marrow cells. We examined the expression of miR-9/9* in a cohort of 647 primary human AMLs. In most cases, miR-9 and miR-9* were significantly upregulated and their expression levels varied according to AML subtype, with the highest expression in MLL-related leukemias harboring 11q23 abnormalities and the lowest expression in AML cases with t(8;21) and biallelic mutations in CEBPA. Gene expression profiling of AMLs with high expression of miR-9/9* and 32D-miR-9/9* identified ETS-related gene (Erg) as the only common potential target. Upregulation of ERG in 32D cells rescued miR-9/9*-induced block in neutrophil differentiation. Taken together, this study demonstrates that miR-9/9* are aberrantly expressed in most of AML cases and interfere with normal neutrophil differentiation by downregulation of ERG
    corecore