1,264 research outputs found

    A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse

    Full text link
    We propose a multiscale mechanobiological model of bone remodelling to investigate the site-specific evolution of bone volume fraction across the midshaft of a femur. The model includes hormonal regulation and biochemical coupling of bone cell populations, the influence of the microstructure on bone turnover rate, and mechanical adaptation of the tissue. Both microscopic and tissue-scale stress/strain states of the tissue are calculated from macroscopic loads by a combination of beam theory and micromechanical homogenisation. This model is applied to simulate the spatio-temporal evolution of a human midshaft femur scan subjected to two deregulating circumstances: (i) osteoporosis and (ii) mechanical disuse. Both simulated deregulations led to endocortical bone loss, cortical wall thinning and expansion of the medullary cavity, in accordance with experimental findings. Our model suggests that these observations are attributable to a large extent to the influence of the microstructure on bone turnover rate. Mechanical adaptation is found to help preserve intracortical bone matrix near the periosteum. Moreover, it leads to non-uniform cortical wall thickness due to the asymmetry of macroscopic loads introduced by the bending moment. The effect of mechanical adaptation near the endosteum can be greatly affected by whether the mechanical stimulus includes stress concentration effects or not.Comment: 25 pages, 10 figure

    Assembly of Effective Halide Receptors from Components. Comparing Hydrogen, Halogen, Tetrel Bonds

    Get PDF
    Receptors for halide anions are constructed based on the imidazolium unit, and then replacing the H-bonding C-H group firstby halogen-bonding C-I and then by tetrel-bonding C-SnH3 and C-SiF3.Attaching a phenyl ring to any of these species has little effect on its ability to bind a halide, but incorporation of a second imidazolium to the benzene connector, forming a bidentate dicationic receptor, greatly enhances the binding. Addition of electron-withdrawing F atoms to each imidazolium adds a further increment. F- consistently binds more strongly to the various receptor models than does Cl-. Whereas replacement of the H atom on the imidazolium groups with the halogen-bonding I has an inconsistent perturbing effect, tetrel-bonding SnH3 significantly enhances the binding with either halide, and SiF3 even more so. Placement of the various complexes into aqueous solution reduces binding energies, but the trends that occur in the gas phase are largely reproduced in water. The tetrel-bonding receptors are the most selective for F- over Cl-, with an equilibrium ratio on the order of 1014 for SnH3 and1028 for SiF3. When combined with their strong halide binding, SiF3-ImF3-Bz-ImF3-SiF3+2 bipodal receptors represent an optimal choice in terms of both binding strength and selectivity

    Ab initio study of intermolecular potential of H2O trimer

    Get PDF
    Nonadditive contribution to the interaction energy in water trimer is analyzed in terms of Heitler–London exchange, SCF deformation, induction and dispersion nonadditivities. Nonadditivity originates mainly from the SCF deformation effect which is due to electric polarization. However, polarization does not serve as a universal mechanism for nonadditivity in water. In the double‐donor configuration, for example, the Heitler–London exchange contribution is the most important and polarization yields the wrong sign. Correlation effects do not contribute significantly to the nonadditivity. A detailed analysis of the pair potential is also provided. The present two‐body potential and its components are compared to the existing ab initio potentials (MCY) as well as to empirical ones (RWK2,TIP,SPC). The ways to improve these potentials are suggested

    Hydrogen bonding in infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    Hydrogen bonding in infinite HF and HCl bent (zigzag) chains is studied using the ab initio coupled-cluster singles and doubles (CCSD) correlation method. The correlation contribution to the binding energy is decomposed in terms of nonadditive many-body interactions between the monomers in the chains, the so-called energy increments. Van der Waals constants for the two-body dispersion interaction between distant monomers in the infinite chains are extracted from this decomposition. They allow a partitioning of the correlation contribution to the binding energy into short- and long-range terms. This finding affords a significant reduction in the computational effort of ab initio calculations for solids as only the short-range part requires a sophisticated treatment whereas the long-range part can be summed immediately to infinite distances.Comment: 9 pages, 4 figures, 3 tables, RevTeX4, corrected typo

    Crystal structures and proton dynamics in potassium and cesium hydrogen bistrifluoroacetate salts with strong symmetric hydrogen bonds

    Get PDF
    The crystal structures of potassium and cesium bistrifluoroacetates were determined at room temperature and at 20 K and 14 K, respectively, with the single crystal neutron diffraction technique. The crystals belong to the I2/a and A2/a monoclinic space groups, respectively, and there is no visible phase transition. For both crystals, the trifluoroacetate entities form dimers linked by very short hydrogen bonds lying across a centre of inversion. Any proton disorder or double minimum potential can be rejected. The inelastic neutron scattering spectral profiles in the OH stretching region between 500 and 1000 cm^{-1} previously published [Fillaux and Tomkinson, Chem. Phys. 158 (1991) 113] are reanalyzed. The best fitting potential has the major characteristics already reported for potassium hydrogen maleate [Fillaux et al. Chem. Phys. 244 (1999) 387]. It is composed of a narrow well containing the ground state and a shallow upper part corresponding to dissociation of the hydrogen bond.Comment: 31 pages, 7 figure

    Studying patterns of use of transport modes through data mining - Application to U.S. national household travel survey data set

    Get PDF
    Data collection activities related to travel require large amounts of financial and human resources to be conducted successfully. When available resources are scarce, the information hidden in these data sets needs to be exploited, both to increase their added value and to gain support among decision makers not to discontinue such efforts. This study assessed the use of a data mining technique, association analysis, to understand better the patterns of mode use from the 2009 U.S. National Household Travel Survey. Only variables related to self-reported levels of use of the different transportation means are considered, along with those useful to the socioeconomic characterization of the respondents. Association rules potentially showed a substitution effect between cars and public transportation, in economic terms but such an effect was not observed between public transportation and nonmotorized modes (e.g., bicycling and walking). This effect was a policy-relevant finding, because transit marketing should be targeted to car drivers rather than to bikers or walkers for real improvement in the environmental performance of any transportation system. Given the competitive advantage of private modes extensively discussed in the literature, modal diversion from car to transit is seldom observed in practice. However, after such a factor was controlled, the results suggest that modal diversion should mainly occur from cars to transit rather than from nonmotorized modes to transi

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Life events and travel behavior exploring the interrelationship using UK Household Longitudinal Study data

    Get PDF
    Recent research has indicated that changes in travel behavior are more likely at the time of major life events. However, much remains to be learned about the extent to which different life events trigger behavioral change and the conditions under which life events are more likely to trigger change. The UK Household Longitudinal Study (UKHLS) offers a previously unavailable opportunity to investigate this topic for a large, representative sample of the UK population. UKHLS data were also linked to local spatial data drawn from the census and other sources to elucidate the effect of the spatial context on changes to travel behavior in association with life events. Findings from an exploratory analysis of data from UKHLS Waves 1 and 2 are presented first Transition tables demonstrate a strong association between changes in car ownership and commute mode and the following life events: employment changes, residential relocation, retirement, the birth of children, and changes in household structure. The results of logit models that relate the probability of an increase and a decrease in the number of cars owned to the occurrence of life events and that control for individual and household characteristics and spatial context are then shown. These models show, for example, that moves to urban and rural areas have contrasting effects on travel behavior and that having a new child in itself is not a significant influence on car ownership in the short term

    An Exploration of the Ozone Dimer Potential Energy Surface

    Get PDF
    The (O3)2 dimer potential energy surface is thoroughly explored at the ab initio CCSD(T) computational level. Five minima are characterized with binding energies between 0.35 and 2.24 kcal/mol. The most stable may be characterized as slipped parallel, with the two O3 monomers situated in parallel planes. Partitioning of the interaction energy points to dispersion and exchange as the prime contributors to the stability, with varying contributions from electrostatic energy, which is repulsive in one case. Atoms in Molecules analysis of the wavefunction presents specific O⋯O bonding interactions, whose number is related to the overall stability of each dimer. All internal vibrational frequencies are shifted to the red by dimerization, particularly the antisymmetric stretching mode whose shift is as high as 111 cm−1. In addition to the five minima, 11 higher-order stationary points are identified
    • 

    corecore