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ABSTRACT 

Receptors for halide anions are constructed based on the imidazolium unit, and then replacing the H-

bonding C-H group first by halogen-bonding C-I and then by tetrel-bonding C-SnH3 and C-SiF3. Attaching 

a phenyl ring to any of these species has little effect on its ability to bind a halide, but incorporation of a 

second imidazolium to the benzene connector, forming a bidentate dicationic receptor, greatly enhances the 

binding.  Addition of electron-withdrawing F atoms to each imidazolium adds a further increment.  F- 

consistently binds more strongly to the various receptor models than does Cl-.  Whereas replacement of the 

H atom on the imidazolium groups with the halogen-bonding I has an inconsistent perturbing effect, tetrel-

bonding SnH3 significantly enhances the binding with either halide, and SiF3 even more so.  Placement of 

the various complexes into aqueous solution reduces binding energies, but the trends that occur in the gas 

phase are largely reproduced in water.  The tetrel-bonding receptors are the most selective for F- over Cl-, 

with an equilibrium ratio on the order of 1014 for SnH3 and 1028 for SiF3 . When combined with their strong 

halide binding, SiF3-ImF3-Bz-ImF3-SiF3
+2 bipodal receptors represent an optimal choice in terms of both 

binding strength and selectivity.  

 

 

  

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@USU

https://core.ac.uk/display/287626048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:steve.scheiner@usu.edu


 

2 

 

INTRODUCTION 

The detection, extraction, and transport of anions is of paramount importance in a wide diversity of 

applications, whether biological or chemical, medical or environmental 1.  In the biological realm, various 

organisms have evolved binders that are highly specific for one anion or another.  One example is the 

sulphate-binding protein of Salmonella typhimurium 2 which binds this anion via a number of H-bonds.  

Another protein is responsible for the binding and transport of phosphate 3 with very high specificity.  

There is a protein in blue-green algae that is highly specific for the nitrate anion 4, and another binds 

specifically to bicarbonate 5.  Whereas the evolutionary process has developed some very specific and 

selective anion binding agents, modern technology lags behind.  Many receptors make use of general 

electrostatic interactions, and sometimes of H-bonds 6-8.  The thiourea molecule, for example, is a widely 

used 9-12 anion binder, taking advantage of its H-bonding capability. 

One important advance in this field has arisen with the growing recognition of the phenomenon of 

halogen bonds (XBs) 13-19, wherein an attractive force occurs between a halogen atom and an electron 

donor, such as the lone pair of an amine.  One of the more intriguing and potentially useful applications of 

XBs is associated with the development of receptors that are highly selective for one anion over another 20-

32.  Our own group 33-35 has applied quantum chemical calculations to this issue, showing that the 

replacement of H in a series of H-bonding bidentate receptors by halogen atoms can indeed enhance their 

binding to halides.  The work detailed a remarkable enhancement of both binding and selectivity, most 

particularly when the H atom is replaced by I. 

It seems clear, then, that halogen bonding has enormous potential to magnify the ability of receptors to 

bind anions.  But just as the switchover from H to halogen bonding introduced a new dimension to the 

field, extending this same philosophy to other related sorts of bonding may also offer added benefits.  More 

specifically, just as the elements of the halogen family (Cl, Br, I, etc) can replace H as a bridging atom in 

strongly bound complexes, the same is equally true for other families in the periodic table.  There is rapidly 

growing evidence, for example, that chalcogen atoms such as S and Se engage in bonding of a parallel sort 
36-42.  And indeed that chalcogen bonds can act to bind various anions to receptors has already been well 

documented 43-47. 

These sorts of binding patterns are not limited to halogens and chalcogens, but are widely reported as 

well for pnicogens (P, As, etc) 48-56.  Although not as well documented at this juncture, there is a growing 

avalanche of data that demonstrate the same is true of tetrels (Si, Ge, etc) 57-65.  These notions should not be 

entirely surprising, as all of these atoms, like halogens, display highly asymmetric charge distributions 

when bound to another atom, and are even less electronegative than the halogens, so have a better native 

ability to generate a positive electrostatic potential region directed toward an approaching nucleophile.   

 It was just this idea that motivated our group to perform a set of calculations to examine how the latter 

sorts of bonds might compare with one another in this context.  The transition from chalcogen to pnicogen 

to tetrel yielded 66 not only progressively stronger binding to anions, but also greater selectivity.  In a 

quantitative sense, the binding energy of halides to a tetrel-bonding bidentate receptor was as high as 63 

kcal/mol, and preferentially bound F- over other halides with a selectivity of 27 orders of magnitude.  These 

quantities are especially impressive, given the fact that the receptor was electrically neutral, forgoing the 

positive charge on many other such candidates.  These findings were reinforced 67 by additional 

calculations that showed an enhancement when progressing further down each column of the periodic table.  
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In an interesting distinction, whereas the strongest fluoride binding agents utilize the tetrel bonds of the Sn 

atom, it is I-halogen bonds that are preferred for Cl- and Br-.   

The aforementioned calculations, and many of the experimental measurements, have centered on 

bipodal receptors in which a pair of imidazoliums act as the direct binding units.  These two rings are 

attached to one another through the intermediacy of a relatively inert connecting unit, in many cases a 

benzene ring.  The past findings lead to several important questions related to the design and synthesis of 

effective anion binding agents.  In a general sense, do the various parts of the receptors work in concert 

with one another; i.e. is the whole greater than the sum of its parts?  More specifically, are two binding 

agents on the same molecule truly better than one?  Does the binding suffer, and if so by how much, if the 

bipodal receptor is replaced by the much simpler single imidazolium?  What is the influence of the 

connecting benzene ring; does the binding of an imidazolium improve if attached to such a ring?  Since it is 

well known that the proximity of electron-withdrawing agents add to the electron-accepting ability of a 

Lewis acid, can the full receptor be improved by adding such agents onto the imidazolium rings?  Past 

work has suggested that tetrel bonding compares favorably with both halogen and hydrogen bonding, so a 

comparison of these three binding modes is in order.  It should be stressed that an effective binding agent is 

not defined simply by the strength of its interaction with a halide, but also by its degree of selectivity for 

one anion over another.  So the data below focus on both of these two issues. 

SYSTEMS AND METHODS 

The dimethyl-imidazolium ion ImH+ was taken as a starting point for complexation with halides F- and 

Cl-.  These two anions are used in order to measure selectivity for one anion over the other, as past work 33-

35, 66-67 has indicated a great deal of differential binding between the two of them.  As illustrated in Figs 1a 

and 1b, these halides interact directly with the CH group that lies between the two methyl groups.  In order 

to assess any enhancement in binding that arises by changing the bonding from a H-bond (HB) to halogen 

or tetrel bond, this central H was changed respectively to I and SnH3, as displayed in Fig 1.  These atoms 

were chosen from the fourth row of the periodic table as past results 66-67 suggest they form especially 

strong halogen and tetrel bonds, respectively.  On the other hand, it is widely understood that the addition 

of electron-withdrawing agents enhances the ability of the atom in question to accept electrons.  So even 

though Si lies two rows higher than Sn in the periodic table, and thus forms weaker tetrel bonds, its Lewis 

acid strength ought to be enhanced by adding F atoms.  Consequently, it is of interest to compare the 

binding of SnH3 with SiF3, also pictured in Fig 1. 

The first step in formation of the bidentate receptors that contain a pair of imidazoliums is the addition 

of a benzene ring connector, so the methyl group on one N atom was replaced by a phenyl group, as 

pictured in Fig 1c.  The full bidentate receptor is achieved when a second ImH+ is added to the phenyl ring, 

with structures of the dications illustrated in Fig 2.  As in the monodentate cases, the CH group of each 

ImH+ was replaced alternately by I, SnH3, and SiF3.  In keeping with the observation that the presence of 

electron-withdrawing agents near the electrophile enhance the binding, a single F atom was added to each 

of the two Im rings, ortho to the electrophilic group, as indicated in Fig 3.  This effect was magnified by 

adding two more F atoms, for a total of three, on each ring, shown diagrammatically in Fig 4.  Each of 

these receptors was paired with both F- and Cl-, for a total of 36 different receptor-halide pairs.  The 

imidazoliums and benzene spacer groups were chosen first because of their resemblance to receptors 

studied earlier 1, 8, 21, 28, 47, 68-71, and also because prior calculations 35 had indicated they represent an optimal 

choice for this purpose.  
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All the calculations were carried out with the M06-2X DFT functional 72 in conjunction with the aug-

cc-pVDZ basis set, within the framework of the Gaussian-09 73 set of codes. For the heavy atoms I and Sn, 

the aug-cc-pVDZ-PP pseudopotential was taken directly from the EMSL library 74-75 so as to incorporate 

relativistic effects.  This level of theory is appropriate for this task, as evident by previous work by others 
76-85 and very recently by ourselves in dealing with very similar sorts of systems 33-35.  The geometries of 

the receptors and complexes were fully optimized without any restriction, taking into account only true 

minima with all positive vibrational frequencies. The binding energy, Eb, of each halide with its receptor 

was calculated as the difference between the energy of the complex and the sum of the energies of 

separately optimized monomers.  Each binding energy was corrected for basis set superposition error using 

the counterpoise 86 procedure.  To account for solvent effects, the polarizable conductor calculation 

model (CPCM) was applied 87, with water as the solvent.  Molecular electrostatic potential maps were 

visualized and quantified with the Chemcraft and WFA-SAS programs 88-89 and charge transfer assessed 

via the Natural Bond Orbital (NBO) technique 90. 

RESULTS 

The optimized geometries of ImH+ and its I, SnH3, and SiF3-substituted derivatives with F- and Cl- are 

illustrated in Fig 1a and 1b, respectively.  The ImI+ complexes are linear around the I atom, while some 

deviations from linearity are observed in the H, SnH3, and SiF3 structures.  The largest deviation occurs 

when ImH+ is paired with Cl-, as a secondary CH••Cl HB, of length 2.591 Å is formed with one of the two 

methyl groups.  However, this HB is obviously quite a bit weaker, longer and more bent, than the primary 

interaction with the central CH of imidazolium.  It is also notable that this same CH proton effectively 

transfers to F-, lying much closer to F than to C.  The I, SnH3, and SiF3 groups also lie closer to F than to 

the imidazolium C.  Such a transfer does not occur in the Cl- analogues.  Whether F- or Cl-, the halide lies 

somewhat closer to Sn than it does to I, by 0.08-0.10 Å, with the Si··X distance shorter still. 

The binding energies of the F- and Cl- anions to the receptors are recorded in the first two rows of Table 

1.  It is immediately clear that the former binds much more strongly than the latter, by a factor of 4 to 5.  

This strengthening is due first to the higher charge concentration of F-.  A second factor is the near transfer 

of the R group from the imidazole ring to F, as r(R-F) is consistently shorter than is r(R-C).  The Sn atom 

serves as a stronger anchor to the halide, followed by H and then by I, although the latter two are reversed 

when F- is changed to the larger Cl-.  It is the perfluorinated SiF3 group, however, that engages in the 

strongest binding of all.  

In construction of the bipodal receptors, a phenyl ring is attached directly to one of the N atoms of the 

imidazolium.  Such a ring therefore was substituted for one of the two methyl groups, and the optimized 

geometries of these modified imidazoliums with F- are illustrated in Fig 1c.  It is immediately apparent that 

the methyl-to-phenyl mutation affects the analogous geometries of Fig 1a in only minor ways.  In either 

case, the R group transfers across to F.  And the mutation effect on the binding energies is vanishingly 

small, below 3%. 

The next step in construction of the bipodal receptors is the placement of a second imidazolium ring on 

the connecting phenyl.  Figs 2a and 2b display the optimized geometries of the H, I, Sn, and Si receptors, 

when bound respectively to F- and Cl-.  The geometries are symmetric, or very nearly so, with the halide 

equally distant from the two R groups.  Unlike the single Im rings in Fig 1, there is no transfer of either the 

H or I atoms to F, although the SnH3 groups are roughly halfway transferred, with r(Sn-F) slightly shorter 

than r(Sn-C); similarly for SiF3.  In comparison to the monodentate complexes in Fig 1, r(C-R) is shorter 
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and r(R-X) is longer.  Any strain involved in forming a pair of bonds to the halide is largely muted, with 

θ(C-R-X) angles between 156° and 171° in the bidentate species of Fig 2.  With respect to the orientation 

of the central phenyl ring it lies nearly in the plane of the two imidazole rings for R=H, but more nearly 

perpendicular for R=I and SnH3. 

The energetics of these bipodal complexes are contained in the R-Im-Bz-Im-R+2 rows of Table 1.  Not 

surprisingly, these quantities are considerably larger than the corresponding monodentate energies.  This 

magnification is equal to a factor of 1.5 for X=F, but larger for X=Cl, between 2.0 and 3.9.  In a sense, 

then, the binding to Cl- is cooperative in that the formation of two R••Cl bonds is more than twice as strong 

as the single bond for the monodentate receptors.  In contrast, the binding to F- is anticooperative as the 

bipodal receptors bind less than twice as strongly as do their monopodal analogues.   In the context of the 

bidentate species, the smaller F- is bound roughly twice as strongly as is Cl-, not quite as extreme a 

difference as monodentate. 

It is well known that adding electron-withdrawing agents in the vicinity of the electron-accepting R unit 

will typically enhance the ability of this species to engage with an electron donor such as a halide anion.  A 

F atom was thus added to each of the two imidazolium rings, as depicted in Fig 3.  The effects of this 

substitution can be recognized by comparison to the unsubstituted complexes in Fig 2.  In the case of R=H, 

the substitution moves the F- to an asymmetric position, along with a transfer of one of the CH protons to it, 

with r(FH)=1.004 Å.  There is also a loosening up of the CH••O HB to the phenyl ring, with r(H••F) 

elongating from 2.033 to 2.240 Å.  The effects on the Cl- binding geometry are more minor, although the 

HB to the central phenyl group is broken.  For R=I, SnH3, and SiF3, the H-to-F mutation simply shortens 

the R••X distances, with accompanying smaller elongations of the covalent C-R bonds.  The addition of 

two more F atoms on each Im ring introduces only minor further perturbations of the geometry.  

Comparison of these hexa-substituted F receptors in Fig 4 shows further reductions in the R••X distances, 

and smaller elongations of the C-R covalent bonds. 

The last four rows in Table 1 report the energetics of the F-substituted receptors.  One sees that these 

substitutions lead to progressive enhancements in the binding energy.  The first pair of F mutations raise 

this quantity by 11-16 kcal/mol for F- and 7-18 for Cl-; the increments for the next four F substitutions are a 

bit smaller, roughly 65% of those arising from the first pair of F replacements.  Considering the full results 

in Table 1 in total, one sees first of all that the tetrel bonding for R=SnH3 is consistently stronger than for H 

or I, and that for the fluorinated tetrel SiF3 stronger still.  Indeed, the latter binding represents an increment 

of some 25 kcal/mol (12%) over SnH3 for F-, and as much as 16 kcal/mol for Cl-.  F- binds much more 

strongly than does Cl-.  The largest binding energy of all, 251 kcal/mol, is associated with F- and the 

hexafluorinated receptor with R=SiF3. 

Aqueous Environment 

A great deal of interest lies in the use of anion receptors within an aqueous environment.  Accordingly, 

the binding energies of the various complexes were computed when the system was immersed in water, 

within the context of the CPCM protocol which views solvent as a polarizable medium.  Since the 

individual participants are both electrically charged, the receptor is a mono/dication and the halide a 

monoanion, this medium very strongly stabilizes the separated monomers, much more so than the complex 

with an overall charge of 0 or +1.  Consequently, the binding energies are greatly reduced, as may be seen 

in Table 2 in which these quantities are compiled.  Despite these reductions, the trends remain quite similar 

to those in the gas phase, as is evident by a comparison of Fig 5b with 5a.  Regardless of medium, the 
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fluoride (solid lines) is bound more strongly than chloride (broken lines).  As one moves from left to right 

in Fig 5, the single Im ring is replaced by a pair of rings, then first 1 and then 3 F atoms are added to each 

ring.  Regardless of medium, each of these changes produces an enhancement in the binding.  With respect 

to the F- solid lines, R=SnH3 which is denoted by red lines, binds more strongly than do R=H (black) or I 

(purple).  This latter distinction is most obvious for aqueous solution, where R=I binds more strongly than 

does R=H.  The green lines associated with the SiF3 perfluorinated tetrel substituents are considerably 

higher than all others.  This large increment is particularly notable for fluoride binding in water.  Chloride 

binding is less dependent upon R, although R=H is noticeably more weakly bound for the fluorinated Im 

rings in water.  It is stressed finally that despite the ability of aqueous solution to weaken the interaction, 

the binding energies remain rather large, particularly for fluoride, where Eb ranges up to as high as 64 

kcal/mol. 

By suitable incorporation of vibrational and entropic effects, one can compute the free energies of 

binding.  These quantities are generally a bit less exothermic than are ∆E, generally by some 5-11 kcal/mol.  

More importantly, these changes are fairly uniform from one system to the next, and so the trends in Fig 5 

are basically unaltered.  For example, the free energy of the most strongly bound complex between SiF3-

ImF3-Bz-ImF3- SiF3
+2 and F- is 238 kcal/mol in the gas phase, less exothermic than ∆E by some 13 

kcal/mol.  As another example, the binding energy of Cl- with H-Im-Bz-Im-H+2 is 98 kcal/mol, reduced to 

90 kcal/mol when ∆G is evaluated.  

As mentioned earlier, F- is bound more strongly than is Cl-, so these receptors are capable of a certain 

degree of selectivity for the former over the latter.  The free energy advantage of binding of fluoride over 

chloride is contained in Table 3 where it may be seen to vary from a minimum of 8.7 kcal/mol for Im-H+ to 

as high as 40 kcal/mol for SiF3-ImF-Bz-ImF-SiF3
+2. Indeed, the R= SiF3 receptors in the last column of 

Table 3 show the largest ∆G selectivity of 37-40 kcal/mol, roughly twice that of even the SnH3 analogues.  

The equilibrium ratio of fluoride to chloride bound receptors can be expressed as K=exp(∆G{F-}-∆G{Cl-

})/RT which are displayed in the indicated rows of Table 3. Clearly, the R=SiF3 receptors are uniformly the 

most selective, with K~1028.  They are followed by their SnH3 sisters with quantities of roughly 1014.  The 

R=I receptors are much less selective, with K in the range between 107 and 108.  There is a good deal of 

variability for R=H.  If the Im rings are not fluorinated K is roughly 106 - 107, but this quantity rises as F 

atoms are added to the Im rings, reaching 4x1011 for a single F atom, and as much as 5x1014 for 

trisubstituted rings. 

An optimal receptor will not only be selective for F-, but will also bind it strongly.  So while H-ImF3-

Bz-ImF3-H
+2 shows a selectivity comparable to its SnH3-substituted analog, Table 2 shows the binding 

energy of the former is 29 kcal/mol, compared to 41 kcal/mol for SnH3-ImF3-Bz-ImF3-SnH3
+2.  This 12 

kcal/mol difference corresponds to nearly a 109 advantage when expressed as a Boltzmann ratio.  But the 

SiF3 tetrel binding receptors are superior in both respects.  Not only is their equilibrium F-/Cl- ratio much 

larger than any of the others, but their binding energy is also the greatest, and by a wide margin.  In 

summary, the R= SiF3 receptors show the highest selectivity for F- over Cl-.  When coupled with a pair of 

trifluorinated Im rings, the combination of strong binding and high selectivity make these receptors the 

optimal choice.  

Electronic Structure Analysis 

There are a number of measures of noncovalent bond strength that derive from analysis of the wave 

function.  One of these measures is associated with the natural bond orbital (NBO) approach which 
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evaluates energetic contributions of charge transfers from one localized orbital to another.  In the systems 

being considered here, the most prominent such charge transfer is that from the occupied lone pairs of the 

halide to the σ*(C-X) antibonding orbital of the substituted imidazolium.  These quantities are displayed in 

the first four columns of Table 4.  In a number of cases, particularly those involving the SnH3 substituent, 

the Sn atoms are nearly equally distant between the halide and the imidazole, i.e. there is at least partial Sn 

transfer, which complicates the NBO analysis which depends upon a clear separation.  One can nonetheless 

see certain enlightening trends in the NBO data.  For example, the monodentate complexes in the first two 

rows show evidence of a stronger X••R interaction than the bidentate systems which involve two, albeit 

weaker, such noncovalent bonds.  The inclusion of first two and then six F atoms on the imidazolium pair 

adds to the charge transfer, parallel to the bonding trends in Tables 1 and 2.  On the other hand, even 

though F- is consistently bound more strongly than is Cl-, there is only a small margin between the two with 

respect to E(2), although this comparison is clouded somewhat by the tendency of the H of the 

unsubstituted imidazolium to transfer to the former halide.  The R=SiF3 values do reflect the stronger 

binding of F- over Cl-, but not in the monocation cases. 

The issue of partial transfer is less problematic in the AIM analysis of the wave function.  The total 

density at the pertinent bond critical point between X- and the R atom is reported in the last four columns of 

Table 4.  One can see first of all that these densities are larger for the F••R noncovalent bonds as compared 

to Cl••R.  As in the case of E(2), the single X••R bond in the monodentate complexes are stronger than 

each of the individual such bonds in their bidentate sisters.  Like the interaction energies themselves, ρBCP 

does not show much variation with respect to the choice of binding atom R, although SiF3 is consistently 

largest.  There is again the clear tendency that progressive F-substitution on the imidazolium rings 

enhances the noncovalent bond strength. 

Due to the fact that a full charge is carried by both partners in each complex, it seems obvious that a 

good deal of the interaction will arise from simple Coulombic attraction.  One can assess the readiness of 

each receptor to an incoming anion by inspection of the molecular electrostatic potential (MEP) that 

surrounds it.  Indeed, prior work 44 has shown that the MEP can correlate quite nicely with experimental 

anion binding in related systems.  In particular, the area between the two R groups where the halide is 

destined to reside is of greatest interest.  This potential is illustrated for the various receptors in Fig 6.  Due 

to the positive overall charge on the receptor, the potential is positive over the entire surface; the red and 

blue regions respectively indicate the least and most positive areas.  The single positively charged receptors 

in the top row quite naturally have a lower potential overall than do the dications, so a different set of 

extrema is used to show the full range.  Also, the R=H receptors tend to have a more positive surrounding 

potential than the other R groups. 

It appears that the R=I, SnH3, and SiF3 groups are not the most positive regions, but that there is a more 

prevalent blue color around the remainder of the Im ring.  For R=H, on the other hand, the most positive 

area surrounds the C-H proton(s).  It is therefore not unreasonable to suspect that an anion might prefer a 

location other than that targeted in this work.  To test this notion, both F- and Cl- anions were allowed to 

approach several of the imidazolium species from a number of different directions.  Taking the ImI+ 

imidazolium as a test case, a fluoride was placed initially in a position where it might approach one of the 

methyl groups head-on which could facilitate the formation of a trifurcated CH••F H-bond.  The fluoride 

was also placed directly above the Im ring, above the two C atoms that are bonded to H rather than methyl 

groups.  In either case, the F- moved so as to displace the I atom from the C-I group, taking advantage of 
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the energetic preference for a covalent C-F over a C-I bond, as well as the instability of the very compact F- 

anion as compared to the much more diffuse I-.  Such structures do not represent receptor/halide 

configurations.  When placed initially in the plane of the ImI+, approaching its two CH bonds, the F- 

extracted one of these two protons, forming a neutral FH molecule; this arrangement was less stable than 

the halogen-bonded species by some 9.8 kcal/mol. 

Unlike F-, Cl- is unable to replace the I atom on ImI+.  It will engage in a H-bonded complex with one 

of the two methyl groups, but this structure is 20.7 kcal/mol higher in energy than the halogen-bonded 

complex.  Cl- will also form CH••Cl H-bonds with the two CH groups of ImI+, but again less stable than the 

CI••Cl structure, this time by 17.4 kcal/mol.  Chloride also can find itself above the ImI+ plane, specifically 

2.81 Å above the C atom bonded to I; this local minimum is 4.5 kcal/mol less stable than the halogen bond 

of interest.  With respect to the diimidazolium I-Im-Bz-Im-I+2, a fluoride can position itself on the other 

side of the receptor from the I atom, engaging in CH••F HBs, but this minimum lies 13.9 kcal/mol higher in 

energy than the halogen-bonded global minimum.  When placed initially over the plane of one of the two 

ImI rings, the F- anion will again displace one of the two I atoms.  In summary, then, the halogen-bonded 

species discussed above do indeed represent the global minima for noncovalent binding of the halides. 

Another view of the electrostatic potential focuses on its value at a particular point in space.  The point 

chosen is traditionally that which corresponds to the maximum of the potential on a surface surrounding the 

molecule that represents a constant electron density of 0.001 au.  The value of this quantity, commonly 

referred to as Vs,max for each receptor is displayed in Table 5.  The maximum chosen in each case is that 

which most closely represents the position to be adopted by the incoming halide, roughly along the 

extension of the C-R axis.  Like the full maps of the potentials in Fig 6, the values of Vs,max are more 

positive for the dications than for the monocations in the first row of Table 5.  A second trend is the much 

higher values for R=H and SiH3, followed by SnH3 and then I, as in the sequence H ~ SiF3 >> SnH3 > I.  

Note also that each substitution of additional F atoms on the Im rings also adds to the magnitude of Vs,max, 

as one progresses down each column of Table 5. 

There are certain trends in Vs,max that mimic those observed for the binding energies.  For example, the 

stronger binding of SiF3 over SnH3 and then over I is correctly predicted by Vs,max.  The stronger binding 

caused by progressive fluorosubstitution is also observed in both quantities.  On the other hand, while R=H 

has the highest Vs,max, its binding energy is typically less than that observed for R=SiF3 and SnH3, and even 

R=I in certain cases.  One might conclude that while the electrostatic potential certainly offers important 

clues as to the ability of a given receptor to bind to a halide, it cannot be taken as an absolute predictor of 

relative binding strength. 

SUMMARY AND DISCUSSION 

F- consistently binds more strongly to the various receptor models than does Cl-.  The addition of a 

phenyl ring to a single imidazolium perturbs the binding very little.  On the other hand, placement of a 

second imidazolium on the benzene connector group markedly enhances binding energies.  Although less 

than a full doubling for F- binding, there is a strong cooperative effect for Cl- which more than doubles Eb.  

Whereas replacement of the H atom on the imidazolium groups with the halogen-bonding I has an 

inconsistent perturbing effect, tetrel-bonding SnH3 significantly enhances the binding with either halide, 

and this effect is even stronger for SiF3.  The addition of electron-withdrawing F substituents on the Im 

rings adds a substantial increment to the binding energies. 
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Placement of the various complexes into aqueous solution reduces binding energies, due to the 

preferential stabilization by the medium of the oppositely charged separated species, as compared to the 

complexes.  Nevertheless, the trends in binding energy that occur in the gas phase are reproduced in water, 

barring several minor perturbations.  These same trends are true also when binding energetics are converted 

to free energies by inclusion of vibrational and entropic effects.  The tetrel-bonding receptors are the most 

selective for fluoride over chloride, with an equilibrium ratio on the order of 1014 for SnH3 and 1028 for 

SiF3.  When combined with their strong halide binding, SiF3-ImF3-Bz-ImF3-SiF3
+2 bipodal receptors 

represent an optimal choice in terms of both binding strength and selectivity. 

There are certain facets of the conclusions arising from the calculations that are consistent with prior 

experimental measurements.  For example, the magnification of binding energy noted here when a single 

receptor group such as imidazolium or its substituted analogs is combined with a second such group in a 

bipodal arrangement is consistent with a recent experimental report 45 of a ten-fold magnification of 

binding constant with halides.  Moreover, there is every reason to think that the computed values of ∆G in 

solution might closely reproduce experimental quantities, based in part on the good agreement noted earlier 
44 for the chalcogen bonds formed by Te with halides. There has also been a good correlation noted 91 

between binding sensitivity and ∆H. 

 

 

 

 

  



 

10 

 

REFERENCES 

1. Langton, M. J.; Serpell, C. J.; Beer, P. D. Anion Recognition in Water: Recent Advances from a 

Supramolecular and Macromolecular Perspective. Angew. Chem. Int. Ed. 2016, 55, 1974-1987. 

2. Pflugrath, J. W.; Quiocho, F. A. Sulphate Sequestered in the Sulphate-Binding Protein of Salmonella 

Typhimurium Is Bound Solely by Hydrogen Bonds. Nature 1985, 314, 257-260. 

3. Luecke, H.; Quiocho, F. A. High Specificity of a Phosphate Transport Protein Determined by 

Hydrogen Bonds. Nature 1990, 347, 402-406. 

4. Koropatkin, N. M.; Pakrasi, H. B.; Smith, T. J. Atomic Structure of a Nitrate-Binding Protein Crucial 

for Photosynthetic Productivity. Proc. Nat. Acad. Sci., USA 2006, 103, 9820-9825. 

5. Koropatkin, N. M.; Koppenaal, D. W.; Pakrasi, H. B.; Smith, T. J. The Structure of a Cyanobacterial 

Bicarbonate Transport Protein, Cmpa. J. Biol. Chem. 2007, 282, 2606-2614. 

6. Ihm, H.; Yun, S.; Kim, H. G.; Kim, J. K.; Kim, K. S. Tripodal Nitro-Imidazolium Receptor for 

Anion Binding Driven by (C−H)+- - -X- Hydrogen Bonds. Org. Lett. 2002, 4, 2897-2900. 

7. Zurro, M.; Asmus, S.; Bamberger, J.; Beckendorf, S.; García Mancheño, O. Chiral Triazoles in 

Anion-Binding Catalysis: New Entry to Enantioselective Reissert-Type Reactions. Chem. Eur. J. 

2016, 22, 3785-3793. 

8. Toure, M.; Charles, L.; Chendo, C.; Viel, S.; Chuzel, O.; Parrain, J.-L. Straightforward and 

Controlled Shape Access to Efficient Macrocyclic Imidazolylboronium Anion Receptors. Chem. 

Eur. J. 2016, 22, 8937-8942. 

9. Steed, J. W. Anion-Tuned Supramolecular Gels: A Natural Evolution from Urea Supramolecular 

Chemistry. Chem. Soc. Rev. 2010, 39, 3686-3699. 

10. Li, A.-F.; Wang, J.-H.; Wang, F.; Jiang, Y.-B. Anion Complexation and Sensing Using Modified 

Urea and Thiourea-Based Receptors. Chem. Soc. Rev. 2010, 39, 3729-3745. 

11. Zhang, Z.; Schreiner, P. R. (Thio)Urea Organocatalysis-What Can Be Learnt from Anion 

Recognition? Chem. Soc. Rev. 2009, 38, 1187-1198. 

12. Lizal, T.; Ustrnul, L.; Necas, M.; Sindelar, V. Propanediurea-Based Molecular Clips Bind Halide 

Anions: An Insight into the Mechanism of Cucurbituril Formation. J. Org. Chem. 2016, 81, 8906-

8910. 

13. Allen, F. H.; Lommerse, J. P. M.; Hoy, V. J.; Howard, J. A. K.; Desiraju, G. R. Halogen...O(Nitro) 

Supramolecular Synthon in Crystal Engineering: A Combined Crystallographic Database and Ab 

Initio Molecular Orbital Study. Acta Cryst. 1997, B53, 1006-1016. 

14. Riley, K. E.; Ford Jr, C. L.; Demouchet, K. Comparison of Hydrogen Bonds, Halogen Bonds, CH..Π 

Interactions, and CX..Π Interactions Using High-Level Ab Initio Methods. Chem. Phys. Lett. 2015, 

621, 165-170. 

15. Riley, K. E.; Hobza, P. The Relative Roles of Electrostatics and Dispersion in the Stabilization of 

Halogen Bonds. Phys. Chem. Chem. Phys. 2013, 15, 17742-17751. 

16. Donoso-Tauda, O.; Jaque, P.; Elguero, J.; Alkorta, I. Traditional and Ion-Pair Halogen-Bonded 

Complexes between Chlorine and Bromine Derivatives and a Nitrogen-Heterocyclic Carbene. J. 

Phys. Chem. A 2014, 118, 9552-9560. 

17. Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The 

Halogen Bond. Chem. Rev. 2016, 116, 2478-2601. 

18. Alkorta, I.; Sanchez-Sanz, G.; Elguero, J.; Bene, J. E. D. FCl:PCX Complexes: Old and New Types 

of Halogen Bonds. J. Phys. Chem. A 2012, 116, 2300-2308. 

19. Politzer, P.; Murray, J. S. A Unified View of Halogen Bonding, Hydrogen Bonding and Other -

Hole Interactions. In Noncovalent Forces, Scheiner, S., Ed. Springer: Dordrecht, Netherlands, 2015; 

Vol. 19, pp 357-389. 

20. Mele, A.; Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. A Halogen-Bonding-Based 

Heteroditopic Receptor for Alkali Metal Halides. J. Am. Chem. Soc. 2005, 127, 14972-14973. 



 

11 

 

21. Brown, A.; Beer, P. D. Halogen Bonding Anion Recognition. Chem. Commun. 2016, 52, 8645-8658. 

22. Caballero, A.; Swan, L.; Zapata, F.; Beer, P. D. Iodide-Induced Shuttling of a Halogen- and 

Hydrogen-Bonding Two-Station Rotaxane. Angew. Chem. Int. Ed. 2014, 53, 11854-11858. 

23. Tepper, R.; Schulze, B.; Jäger, M.; Friebe, C.; Scharf, D. H.; Görls, H.; Schubert, U. S. Anion 

Receptors Based on Halogen Bonding with Halo-1,2,3-Triazoliums. J. Org. Chem. 2015, 80, 3139-

3150. 

24. Barendt, T. A.; Docker, A.; Marques, I.; Félix, V.; Beer, P. D. Selective Nitrate Recognition by a 

Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle. Angew. Chem. Int. Ed. 2016, 55, 

11069-11076. 

25. Massena, C. J.; Wageling, N. B.; Decato, D. A.; Martin Rodriguez, E.; Rose, A. M.; Berryman, O. B. 

A Halogen-Bond-Induced Triple Helicate Encapsulates Iodide. Angew. Chem. Int. Ed. 2016, 55, 

12398-12402. 

26. Chudzinski, M. G.; McClary, C. A.; Taylor, M. S. Anion Receptors Composed of Hydrogen- and 

Halogen-Bond Donor Groups: Modulating Selectivity with Combinations of Distinct Noncovalent 

Interactions. J. Am. Chem. Soc. 2011, 133, 10559-10567. 

27. Sarwar, M. G.; Dragisic, B.; Dimitrijevic, E.; Taylor, M. S. Halogen Bonding between Anions and 

Iodoperfluoroorganics: Solution-Phase Thermodynamics and Multidentate-Receptor Design. Chem. 

Eur. J. 2013, 19, 2050-2058. 

28. Walter, S. M.; Kniep, F.; Rout, L.; Schmidtchen, F. P.; Herdtweck, E.; Huber, S. M. Isothermal 

Calorimetric Titrations on Charge-Assisted Halogen Bonds: Role of Entropy, Counterions, Solvent, 

and Temperature. J. Am. Chem. Soc. 2012, 134, 8507-8512. 

29. Borissov, A.; Lim, J. Y. C.; Brown, A.; Christensen, K. E.; Thompson, A. L.; Smith, M. D.; Beer, P. 

D. Neutral Iodotriazole Foldamers as Tetradentate Halogen Bonding Anion Receptors. Chem. 

Commun. 2017, 53, 2483-2486. 

30. Tepper, R.; Schulze, B.; Bellstedt, P.; Heidler, J.; Gorls, H.; Jager, M.; Schubert, U. S. Halogen-

Bond-Based Cooperative Ion-Pair Recognition by a Crown-Ether-Embedded 5-Iodo-1,2,3-Triazole. 

Chem. Commun. 2017, 53, 2260-2263. 

31. Dumele, O.; Schreib, B.; Warzok, U.; Trapp, N.; Schalley, C. A.; Diederich, F. Halogen-Bonded 

Supramolecular Capsules in the Solid State, in Solution, and in the Gas Phase. Angew. Chem. Int. 

Ed. 2017, 56, 1152-1157. 

32. Wageling, N. B.; Neuhaus, G. F.; Rose, A. M.; Decato, D. A.; Berryman, O. B. Advantages of 

Organic Halogen Bonding for Halide Recognition. Supra. Chem. 2016, 28, 665-672. 

33. Nepal, B.; Scheiner, S. Competitive Halide Binding by Halogen Versus Hydrogen Bonding: Bis-

Triazole Pyridinium. Chem. Eur. J. 2015, 21, 13330-13335. 

34. Nepal, B.; Scheiner, S. Substituent Effects on the Binding of Halides by Neutral and Dicationic 

Bis(Triazolium) Receptors. J. Phys. Chem. A 2015, 119, 13064-13073. 

35. Nepal, B.; Scheiner, S. Building a Better Halide Receptor: Optimum Choice of Spacer, Binding Unit, 

and Halosubstitution. ChemPhysChem. 2016, 17, 836-844. 

36. Burling, F. T.; Goldstein, B. M. Computational Studies of Nonbonded Sulfur-Oxygen and Selenium-

Oxygen Interactions in the Thiazole and Selenazole Nucleosides. J. Am. Chem. Soc. 1992, 114, 

2313-2320. 

37. Iwaoka, M.; Tomoda, S. Nature of the Intramolecular Se···N Nonbonded Interaction of 2-

Selenobenzylamine Derivatives. An Experimental Evaluation by 1H, 77Se, and 15N NMR 

Spectroscopy. J. Am. Chem. Soc. 1996, 118, 8077-8084. 

38. Nagao, Y.; Hirata, T.; Goto, S.; Sano, S.; Kakehi, A.; Iizuka, K.; Shiro, M. Intramolecular 

Nonbonded S···O Interaction Recognized in (Acylimino)Thiadiazoline Derivatives as Angiotensin II 

Receptor Antagonists and Related Compounds. J. Am. Chem. Soc. 1998, 120, 3104-3110. 



 

12 

 

39. Sánchez-Sanz, G.; Alkorta, I.; Elguero, J. Theoretical Study of the HXYH Dimers (X, Y = O, S, Se). 

Hydrogen Bonding and Chalcogen–Chalcogen Interactions. Mol. Phys. 2011, 109, 2543-2552. 

40. Adhikari, U.; Scheiner, S. Effects of Charge and Substituent on the S···N Chalcogen Bond. J. Phys. 

Chem. A 2014, 118, 3183-3192. 

41. Nziko, V. d. P. N.; Scheiner, S. Chalcogen Bonding between Tetravalent SF4 and Amines. J. Phys. 

Chem. A 2014, 118, 10849-10856. 

42. Fick, R. J.; Kroner, G. M.; Nepal, B.; Magnani, R.; Horowitz, S.; Houtz, R. L.; Scheiner, S.; Trievel, 

R. C. Sulfur–Oxygen Chalcogen Bonding Mediates Adomet Recognition in the Lysine 

Methyltransferase Set7/9. ACS Chem. Biol. 2016, 11, 748-754. 

43. Zhao, H.; Gabbaï, F. P. A Bidentate Lewis Acid with a Telluronium Ion as an Anion-Binding Site. 

Nat Chem 2010, 2, 984-990. 

44. Garrett, G. E.; Gibson, G. L.; Straus, R. N.; Seferos, D. S.; Taylor, M. S. Chalcogen Bonding in 

Solution: Interactions of Benzotelluradiazoles with Anionic and Uncharged Lewis Bases. J. Am. 

Chem. Soc. 2015, 137, 4126-4133. 

45. Garrett, G. E.; Carrera, E. I.; Seferos, D. S.; Taylor, M. S. Anion Recognition by a Bidentate 

Chalcogen Bond Donor. Chem. Commun. 2016, 52, 9881-9884. 

46. Benz, S.; Macchione, M.; Verolet, Q.; Mareda, J.; Sakai, N.; Matile, S. Anion Transport with 

Chalcogen Bonds. J. Am. Chem. Soc. 2016, 138, 9093-9096. 

47. Lim, J. Y. C.; Marques, I.; Thompson, A. L.; Christensen, K. E.; Félix, V.; Beer, P. D. Chalcogen 

Bonding Macrocycles and [2]Rotaxanes for Anion Recognition. J. Am. Chem. Soc. 2017, 139, 3122-

3133. 

48. Moilanen, J.; Ganesamoorthy, C.; Balakrishna, M. S.; Tuononen, H. M. Weak Interactions between 

Trivalent Pnictogen Centers: Computational Analysis of Bonding in Dimers X3E...EX3 (E = 

Pnictogen, X = Halogen). Inorg. Chem. 2009, 48, 6740-6747. 

49. Scheiner, S. Can Two Trivalent N Atoms Engage in a Direct N...N Noncovalent Interaction? Chem. 

Phys. Lett. 2011, 514, 32-35. 

50. Bene, J. E. D.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J. Structures, Energies, Bonding, and NMR 

Properties of Pnicogen Complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J. Phys. Chem. A 

2011, 115, 13724-13731. 

51. Scheiner, S. Effects of Multiple Substitution Upon the P...N Noncovalent Interaction. Chem. Phys. 

2011, 387, 79-84. 

52. Li, Q.-Z.; Li, R.; Liu, X.-F.; Li, W.-Z.; Cheng, J.-B. Concerted Interaction between Pnicogen and 

Halogen Bonds in XCl-FH2P-NH3 (X=F, OH, CN, NC, and FCC). ChemPhysChem. 2012, 13, 1205-

1212. 

53. Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. 

Acc. Chem. Res. 2013, 46, 280-288. 

54. Scheiner, S. Detailed Comparison of the Pnicogen Bond with Chalcogen, Halogen and Hydrogen 

Bonds. Int. J. Quantum Chem. 2013, 113, 1609-1620. 

55. Bauzá, A.; Mooibroek, T. J.; Frontera, A. Σ-Hole Opposite to a Lone Pair: Unconventional Pnicogen 

Bonding Interactions between ZF3 (Z=N, P, As, and Sb) Compounds and Several Donors. 

ChemPhysChem. 2016, 17, 1608-1614. 

56. Scheiner, S.; Adhikari, U. Abilities of Different Electron Donors (D) to Engage in a P...D 

Noncovalent Interaction. J. Phys. Chem. A 2011, 115, 11101-11110. 

57. Bauzá, A.; Ramis, R.; Frontera, A. Computational Study of Anion Recognition Based on Tetrel and 

Hydrogen Bonding Interaction by Calix[4]Pyrrole Derivatives. Comput. Theor. Chem. 2014, 1038, 

67-70. 

58. Grabowski, S. J. Tetrel Bond–-Hole Bond as a Preliminary Stage of the Sn2 Reaction. Phys. Chem. 

Chem. Phys. 2014, 16, 1824-1834. 



 

13 

 

59. Tang, Q.; Li, Q. Interplay between Tetrel Bonding and Hydrogen Bonding Interactions in Complexes 

Involving F2XO (X=C and Si) and HCN. Comput. Theor. Chem. 2014, 1050, 51-57. 

60. Azofra, L. M.; Scheiner, S. Tetrel, Chalcogen, and CH..O Hydrogen Bonds in Complexes Pairing 

Carbonyl-Containing Molecules with 1, 2, and 3 Molecules of CO2. J. Chem. Phys. 2015, 142, 

034307. 

61. Scheiner, S. Comparison of CH···O, SH···O, Chalcogen, and Tetrel Bonds Formed by Neutral and 

Cationic Sulfur-Containing Compounds. J. Phys. Chem. A 2015, 119, 9189-9199. 

62. Del Bene, J. E.; Alkorta, I.; Elguero, J. Exploring the (H2C═PH2)
+:N-Base Potential Surfaces: 

Complexes Stabilized by Pnicogen, Hydrogen, and Tetrel Bonds. J. Phys. Chem. A 2015, 119, 

11701-11710. 

63. Southern, S. A.; Bryce, D. L. NMR Investigations of Noncovalent Carbon Tetrel Bonds. 

Computational Assessment and Initial Experimental Observation. J. Phys. Chem. A 2015, 119, 

11891-11899. 

64. Marín-Luna, M.; Alkorta, I.; Elguero, J. A Theoretical Study of the Hnf4−Nsi:N-Base (n = 1–4) 

Tetrel-Bonded Complexes. Theor. Chem. Acc. 2017, 136, 41-. 

65. Liu, M.; Li, Q.; Scheiner, S. Comparison of Tetrel Bonds in Neutral and Protonated Complexes of 

Pyridinetf3 and Furantf3 (T = C, Si, and Ge) with NH3. Phys. Chem. Chem. Phys. 2017, 19, 5550-

5559. 

66. Scheiner, S. Highly Selective Halide Receptors Based on Chalcogen, Pnicogen, and Tetrel Bonds. 

Chem. Eur. J. 2016, 22, 18850-18858. 

67. Scheiner, S. Comparison of Halide Receptors Based on H, Halogen, Chalcogen, Pnicogen, and Tetrel 

Bonds. Faraday Discuss. Chem. Soc. 2017, in press. DOI: 10.1039/C7FD00043J 

68. Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Halogen-Bond-Induced Activation of a 

Carbon–Heteroatom Bond. Angew. Chem. Int. Ed. 2011, 50, 7187-7191. 

69. Sabater, P.; Zapata, F.; Caballero, A.; de la Visitación, N.; Alkorta, I.; Elguero, J.; Molina, P. 

Comparative Study of Charge-Assisted Hydrogen- and Halogen-Bonding Capabilities in Solution of 

Two-Armed Imidazolium Receptors toward Oxoanions. J. Org. Chem. 2016, 81, 7448-7458. 

70. Chakraborty, S.; Dutta, R.; Ghosh, P. Halogen Bonding Assisted Selective Removal of Bromide. 

Chem. Commun. 2015, 51, 14793-14796. 

71. Zapata, F.; Caballero, A.; White, N. G.; Claridge, T. D. W.; Costa, P. J.; Félix, V.; Beer, P. D. 

Fluorescent Charge-Assisted Halogen-Bonding Macrocyclic Halo-Imidazolium Receptors for Anion 

Recognition and Sensing in Aqueous Media. J. Am. Chem. Soc. 2012, 134, 11533-11541. 

72. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, 

Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two 

New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. 

Theor. Chem. Acc. 2008, 120, 215-241. 

73. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 

Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian 09, Revision B.01; 

Wallingford, CT, 2009. 

74. Feller, D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comput. 

Chem. 1996, 17, 1571-1586. 

75. Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, 

T. L. Basis Set Exchange:  A Community Database for Computational Sciences. J. Chem. Infor. 

Model. 2007, 47, 1045-1052. 

76. Boese, A. D. Density Functional Theory and Hydrogen Bonds: Are We There Yet? ChemPhysChem. 

2015, 16, 978-985. 

77. Sladek, V.; Škorňa, P.; Poliak, P.; Lukeš, V. The Ab Initio Study of Halogen and Hydrogen Σn-

Bonded Para-Substituted Pyridine...(X2/XY/HX) Complexes. Chem. Phys. Lett. 2015, 619, 7-13. 



 

14 

 

78. Li, A.; Muddana, H. S.; Gilson, M. K. Quantum Mechanical Calculation of Noncovalent 

Interactions: A Large-Scale Evaluation of Pmx, DFT, and SAPT Approaches. J. Chem. Theory 

Comput. 2014, 10, 1563-1575. 

79. Forni, A.; Pieraccini, S.; Rendine, S.; Sironi, M. Halogen Bonds with Benzene: An Assessment of 

DFT Functionals. J. Comput. Chem. 2014, 35, 386-394. 

80. Bauzá, A.; Alkorta, I.; Frontera, A.; Elguero, J. On the Reliability of Pure and Hybrid DFT Methods 

for the Evaluation of Halogen, Chalcogen, and Pnicogen Bonds Involving Anionic and Neutral 

Electron Donors. J. Chem. Theory Comput. 2013, 9, 5201-5210. 

81. Walker, M.; Harvey, A. J. A.; Sen, A.; Dessent, C. E. H. Performance of M06, M06-2x, and M06-

HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform 

Better Than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. 

J. Phys. Chem. A 2013, 117, 12590-12600. 

82. Mardirossian, N.; Head-Gordon, M. Characterizing and Understanding the Remarkably Slow Basis 

Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies. 

J. Chem. Theory Comput. 2013, 9, 4453–4461. 

83. Elm, J.; Bildeb, M.; Mikkelsena, K. V. Assessment of Binding Energies of Atmospherically 

Relevant Clusters. Phys. Chem. Chem. Phys. 2013, 15, 16442-16445. 

84. DiLabio, G. A.; Johnson, E. R.; Otero-de-la-Roza, A. Performance of Conventional and Dispersion-

Corrected Density-Functional Theory Methods for Hydrogen Bonding Interaction Energies. Phys. 

Chem. Chem. Phys. 2013, 15, 12821-12828. 

85. Rosokha, S. V.; Stern, C. L.; Ritzert, J. T. Experimental and Computational Probes of the Nature of 

Halogen Bonding: Complexes of Bromine-Containing Molecules with Bromide Anions. Chem. Eur. 

J. 2013, 19, 8774-8788. 

86. Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of 

Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553-566. 

87. Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution 

by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995-2001. 

88. Zhurko, G. A. Chemcraft. 

89. Bulat, F. A.; Toro-Labbé, A.; Brinck, T.; Murray, J. S.; Politzer, P. Quantitative Analysis of 

Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization 

Energies. J. Mol. Model. 2010, 16, 1679-1691. 

90. Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 6.0: Natural Bond Orbital Analysis Program. J. 

Comput. Chem. 2013, 34, 1429-1437. 

91. Iyer, S.; Lopez-Hilfiker, F.; Lee, B. H.; Thornton, J. A.; Kurtén, T. Modeling the Detection of 

Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. J. Phys. Chem. A 2016, 

120, 576-587. 

 

  



 

15 

 

 

Table 1. Binding energies (kcal/mol) in the gas phase 

  R=H R=I R=SnH3 R=SiF3 

Im-R+ F- 130.09 126.01 142.06 175.13 

 Cl- 25.08 28.38 38.08 52.13 

R-Im-Bz-Im-R+2 F- 196.57 191.17 206.14 231.65 

 Cl- 97.89 93.45 99.08 106.62 

R-ImF-Bz-ImF-R+2 F- 212.86 202.44 216.83 242.79 

 Cl- 104.90 104.19 109.33 124.88 

R-ImF3-Bz-ImF3-R
+2 F- 221.16 209.58 223.88 251.50 

 Cl- 110.77 111.17 116.07 127.57 

 

 

 

Table 2. Binding energies (kcal/mol) in aqueous solution 

  R=H R=I R=SnH3 R=SiF3 

Im-R+ F- 7.03 14.14 24.34 53.80 

 Cl- 0.99 3.03 4.82 15.22 

R-Im-Bz-Im-R+2 F- 17.37 22.77 29.84 51.92 

 Cl- 8.59 12.55 10.18 11.00 

R-ImF-Bz-ImF-R+2 F- 24.16 27.74 35.73 59.04 

 Cl- 9.70 16.09 14.83 18.38 

R-ImF3-Bz-ImF3-R
+2 F- 29.46 31.98 40.78 63.87 

 Cl- 10.67 19.37 19.07 23.34 

 

 

 

Table 3. Advantage in binding free energy (kcal/mol) at 298 K of F- over Cl-, and equilibrium ratio K for 

preference of F- over Cl- in aqueous solution. 

  R=H R=I R=SnH3 R=SiF3 

Im-R+ ∆G 8.70 10.10 19.02 36.90 

 K 2.4E+06 2.5E+07 8.5E+13 1.1E+27 

R-Im-Bz-Im-R+2 ∆G 10.08 9.42 18.36 40.15 

 K 2.4E+07 7.9E+06 2.8E+13 2.6E+29 

R-ImF-Bz-ImF-R+2 ∆G 15.86 11.05 20.10 39.37 

 K 4.1E+11 1.2E+08 5.3E+14 6.8E+28 

R-ImF3-Bz-ImF3-R
+2 ∆G 20.09 11.81 20.11 38.93 

 K 5.1E+14 4.4E+08 5.3E+14 3.2E+28 
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Table 4. NBO Xlp→σ*(R-C) charge transfer energy E(2) (kcal/mol) and electron density at AIM X••R bond 

critical point (au) 

  NBO E(2) ρBCP 

  R=H R=I R=SnH3 R=SiF3 R=H R=I R=SnH3 R=SiF3 

Im-R+ F- a,b 101.8 78.81 5.13 0.2718 0.0895 0.0910 0.1102 

 Cl- 59.92 91.49 b 8.85 0.0588 0.0588 0.0590 0.0826 

R-Im-Bz-Im-R+2 F- 53.51 37.31 b b 0.0617 0.0524 0.0542 0.0699 

 Cl- 31.41 36.99 44.12 4.60 0.0307 0.0372 0.0364 0.0547 

R-ImF-Bz-ImF-R+2 F- 12.21a 41.50 b 37.92 0.0228a 0.0553 0.0572 0.0707 

 Cl- 43.52 44.12 b 4.59 0.0379 0.0408 0.0385 0.0573 

R-ImF3-Bz-ImF3-R
+2 F- 12.56a 44.84 b 42.11 0.0235a 0.0565 0.0582 0.0707 

 Cl- 50.22 47.59 b 4.65 0.0420 0.0426 0.0397 0.0580 
aR at least partially transferred to X- 
bNBO unable to make proper separation of subunits 

 

 

 

Table 5. Vs,max (kcal/mol)  

 R=H R=I R=SnH3 R=SiF3 

Im-R+ 124.31 110.91 117.88 123.54 

R-Im-Bz-Im-R+2 174.56 152.38 159.64 170.75 

R-ImF-Bz-ImF-R+2 186.34 161.96 168.46 181.27 

R-ImF3-Bz-ImF3-R
+2 213.67a 167.32 174.30 187.34 

aused geometry of complex with Cl- 
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Fig 1. Optimized geometries of complexes of a) F- and b) Cl- with ImH+ and its I, SnH3, and SiF3-

substituted derivatives.  c) Complexes of F- with phenyl-substituted receptors.  Distances in Å and 

angles in degs. 
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Fig 2. Optimized geometries of complexes of a) F- and b) Cl- with R-Im-Bz-Im-R+2, R=H, I, SnH3, and 

SiF3.   Distances in Å. 
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Fig 3. Optimized geometries of complexes of a) F- and b) Cl- with R-ImF-Bz-ImF-R+2, R=H, I, SnH3, and 

SiF3.  Distances in Å. 

  



 

20 

 

 
 

Fig 4. Optimized geometries of complexes of a) F- and b) Cl- with R-ImF3-Bz-ImF3-R
+2, R=H, I, SnH3, 

and SiF3.  Distances in Å. 



 

21 

 

 

 
 

 

Fig 5. Binding energies of F- (solid lines) and Cl- (broken lines) with indicated receptors.  Black lines refer 

to R=H, purple to R=I, red to R= SnH3, and green to R=SiF3.  Gas phase values shown in a and 

aqueous solution in b. 
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Fig 6. Molecular electrostatic potentials (MEPs) of receptors, illustrated on a surface corresponding to 1.5 

times the vdW radius of each atom.  a) ImR+, b) R-Im-Bz-Im-R+2, c) R-ImF-Bz-ImF-R+2, d) R-

ImF3-Bz-ImF3-R
+2.  Ranges shown are in au. 
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