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ABSTRACT: The development and accumulation of secondary metabolites in grapes determine wine color, taste, and aroma.
This study aimed to investigate the effect of leaf removal before flowering, a practice recently introduced to reduce cluster
compactness and Botrytis rot, on anthocyanin, tannin, and methoxypyrazine concentrations in ‘Merlot’ grapes and wines. Leaf
removal before flowering was compared with leaf removal after flowering and an untreated control. No effects on tannin and
anthocyanin concentrations in grapes were observed. Both treatments reduced levels of 3-isobutyl-2-methoxypyrazine (IBMP) in
the grapes and the derived wines, although the after-flowering treatment did so to a greater degree in the fruit specifically. Leaf
removal before flowering can be used to reduce cluster compactness, Botrytis rot, and grape and wine IBMP concentration and to
improve wine color intensity but at the expense of cluster weight and vine yield. Leaf removal after flowering accomplishes
essentially the same results without loss of yield.
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Bl INTRODUCTION removal strategies are used to reduce cluster shading and the
concentration of MPs when high levels in the grapes at harvest
would jeopardize wine quality.

Recently, the application of leaf removal before flowering has
been suggested as a practice for reducing fruit-set and cluster

Canopy-management practices are used in vineyards to improve
cluster microclimate, balance the source—sink relationships, and
improve grape composition. The two most utilized practices in
commercial settings are cluster thinning' and leaf removal.” Of
these two, leaf removal is arguably the most popular in
commercial vineyards.

Traditionally, leaf removal is applied in the cluster zone of the
canopy between berry set and veraison and generally increases

compactness in addition to limiting yield in hl?h yielding
varieties and the incidence of Botrytis rot at harvest Moreover
this technique can improve grape composition”'” by increasing
total soluble solids (TSS),”'""’ anthocyanins, and other
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the degree of cluster exposure to sunlight. Cluster exposure can polyphenols; possibly by improving the leaf area-to-yield

boost or suppress anthocyanin accumulation depending on the ratio. How.ever, th1§ results have HQt alv:rsa)rg been- consistent
3,4 between climates, vintages, and cultivars.”™° Despite the fact

maximum temperatures reached by the exposed berries.
that this strategy has been suggested for high-yielding varieties,

Moreover, sun-exposed berries can be subject to sunburn, X X X i -
which may negatively impact wine quality. Cluster exposure to the reduction of crop size might help improve the c.omp051't10n of
red grapes even in vineyards where leaf area-to-yield ratios are

sunlight also affects the accumulation and degradation of grape b
above limiting thresholds (0.8 m*/kg),"” but crop size reduction

aromatics, specifically of methoxypyrazines (MPs) »> The ' S0 m/ !
berries of several Bordeaux cultivars, such as ‘Merlot’,® ‘Cabernet via, for example, cluster thinning is normally applied by grape

Sauv1gnon ," and ‘Sauvignon blanc® (V. vszera L.) can growers to improve grape composition. Indeed, there is a lack of
accumulate a significant amount of MPs, key odorants in information on how the reduction of crop size and the increase in
wines. Sensory notes in the resulting wines are described as bell leaf area-to-yield ratio can affect the accumulation of secondary
pepper, asparagus, green pea, or tomato-leaf aromas that, when metabolites and particularly volatiles such as methoxypyrazines.

excessive, can lead to unpleasant vegetative notes, particularly in
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In viticultural regions characterized by elevated seasonal
precipitation, a short growing season, or cool temperatures, grape
composition at harvest may be characterized by low anthocyanin
levels and high MP concentrations, respectively. Moreover,
rainfalls and high humidity during the late stages of fruit ripenin%
can favor the development of Botrytis and other cluster rots," "
penalizing fruit quality at harvest. In these regions, the
application of early leaf removal could be adopted by grape
growers as a strategy to (i) improve cluster microclimate favoring
increased air circulation and a lower humidity in the cluster zone;
(ii) reduce cluster compactness and related chances of Botrytis
rot infections; and (iii) increase and reduce the accumulation of
anthocyanins and MPs, respectively, thereby improving grape
and wine quality.

The objective of this study was to evaluate the effect of leaf
removal applied before and after flowering on grape sanitary
status, yield, berry secondary metabolites, wine composition, and
wine sensory attributes in ‘Merlot’, one of the most cultivated
varieties worldwide. To our knowledge, a simultaneous analysis
of anthocyanins, tannins, and MPs during maturation in a red
grape variety as affected by leaf removal has never been
performed before. Our hypothesis was that leaf removal before
flowering could effectively reduce crop size and the incidence of
cluster Botrytis rot, possibly favoring sugars and anthocyanins
accumulation, reducing MP concentration during berry develop-
ment and at harvest, and ultimately improving wine sensory
features.

B MATERIALS AND METHODS

Chemicals. 3-isobutyl-2-methoxypyrazine (IBMP), 3-iso-
propyl-2-methoxypyrazine (IPMP), acetone, methanol (Chro-
masolv), and perchloric acid were supplied by Sigma-Aldrich (St.
Louis, MO). 2-isobutyl-3-methoxy-d3-pyrazine ([*H,]-IBMP)
was supplied by C/D/N/Isotopes (Quebec, Canada). Oenin
chloride was supplied by Extrasynthese (Genay, France).

Location, Plant Material, and Experimental Design.
The experimental trial was conducted in a commercial vineyard
of the Davino Meroi Winery in the Friuli Grave D.O.C.
viticultural area (Pavia di Udine, latitude: 46°00'06” N;
longitude: 13° 17 09” E). ‘Merlot’ (clone 184, rootstock SO4)
grapevines, planted in 2000 at a 2.4 m X 0.8 m spacing (5200
vines per hectare), were used for field experiments in 2012 and
2013. Rows were planted in a north—south orientation, and vines
were winter-pruned to a single Guyot (10 buds per vine) and
trained with a vertical shoot-positioned (VSP) trellis system, with
a total canopy height of 90 cm. During the growing seasons,
shoots were hedged twice in all treatments: (i) manually when
the tips were 30 cm above the catch wire (removed-leaf area
measured) and (ii) mechanically (removed-leaf area not
measured) on July 13 and July 12, in 2012 and 2013, respectively.

A total of three treatments were set as follows: (i) untreated
control (CONT), where all basal leaves were retained in each
shoot, (ii) leaf removal before flowering (LRBF), where five to
six basal leaves per shoot were removed on May 19 and 20 in
2012 and 2013, respectively, approximately 15 d before flowering
(DBF), and (iii) leaf removal after flowering (LRAF), where five
to six leaves per shoot were removed on June 23 and 24 in 2012
and 2013, respectively, 15 d after flowering (DAF). Because of
the particular behavior of the Guyot training system, the central
shoots are shorter, and not always six leaves were unfolded at the
time of preflowering leaf removal. When the shoots had less than
eight leaves, we removed only five leaves to retain at least one to
two small apical leaves per shoot. If present, laterals were retained
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at both timings of leaf removal. Each treatment was replicated
three times in randomly distributed experimental plots of 10
vines each.

The dates of the major phenological stages were assessed.
Budburst was recorded on April 10, 2012 and April 18, 2013,
flowering (50% cap fall) on June 3, 2012 and June 6, 2013.
Veraison (50% red berries) occurred on August 2, 2012 (58
DAF) and on August 7, 2013 (62 DAF). The grapes were
harvested when the TSS reached 21°Brix in the CONT on
September 22, 2012 (111 DAF) and on September 29, 2013
(114 DAF).

Leaf-Area Measurements. Leaf area was assessed on the
main and lateral shoots at four different times during the growing
season: before and after the application of each leaf-removal
treatment, at veraison, and again at harvest. Total leaf area (TLA)
and leaf area-to-yield ratio (LA/Y) at harvest were calculated. A
sample of 50 leaves of different sizes was collected, and a
regression between the main vein length and leaf area was
assessed. These measurements were carried out using a leaf-area
meter (LI-3100, LI-COR, Lincoln, NE). On each date of
measurement, the lengths of the main vein of each of the leaves
were measured for one vine per plot, taking care to collect
information by individual shoot and to keep main leaves separate
from the lateral. With this information, a second correlation
between the number of leaves per shoot (separately for main and
lateral leaves) and the leaf area was then calculated. Finally, the
number of leaves per shoot was counted, again keeping main
leaves separate from lateral, in an additional two plants per plot.
In summary, leaf area was computed for three vines per plot using
the two regression models mentioned above. Total leaf area was
calculated by summing the leaf area of the main and lateral
shoots. Leaf area-to-yield ratio at harvest was calculated after
yield had been determined.

Flowers and Berries Per Cluster. A random sample of 10
clusters per plot was collected at the time of LRBF and the
number of flowers counted. Similarly, 10 clusters per plot were
collected at berry set to determine the number of berries per
cluster.

Yield and Botrytis Rot Estimation. Yield parameters
(cluster weight and cluster number per vine) were collected at
harvest for 10 vines per plot. A total of S0 randomly selected
clusters from each plot were weighed, and their lengths were
measured to calculate an index of grape compactness by dividing
the cluster mass by the cluster length.”® In both seasons, the same
50 clusters were visually inspected for determining the severity of
Botrytis infection as described in Sternad Lemut et al.; ' however,
no signs of infection were observed in 2012, and therefore, only
2013 data are presented.

Berry Sampling and Juice Analysis. Berries were collected
every 12—14 d from approximately 40 DAF until harvest.
Samples were harvested and immediately stored in an insulated
cooler and transported to the laboratory within 1 h. On each
sampling date, one set of 50 and one of 30 berries were sampled
from each plot. The first set was collected to measure the TSS,
pH, and titratable acidity (TA) of the juice, and the second set
was used to measure the concentration of anthocyanins, skin and
seed tannins, and MPs. Berries for juice measurement were
weighed and manually pressed at room temperature. Total
soluble solids (°Brix) and pH were measured using a manual
refractometer (ATC-1, Atago, Tokyo, Japan) and a pH meter
(HI2211, Hanna Instruments, Woonsocket, RI), respectively.
Titratable acidity (expressed as g/L tartaric acid equivalents) was
determined by titration of the juice with NaOH 0.1 N until a pH
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8.2 The second set of 30 berries was weighed and immediately
stored at —80 °C.

Determination of Anthocyanin and Tannin Concen-
tration. Skin and seeds were separated from the frozen berries
using a scalpel. After separation, berry tissues were immediately
dropped into liquid nitrogen, weighed, and ground to a fine
powder with an Al1B IKA analytic mill (Konigswinter,
Germany). An aliquot of 1.8 mL of methanol in water in a 1:1
ratio (v/v) was added to 0.18 g of skin powder in a 2 mL
microtube for the anthocyanin extraction. The extraction was
performed at room temperature in an ultrasonic bath for 1 h.
Samples were then centrifuged at 15 000 rpm for 15 min, diluted,
and filtered using regenerated cellulose membranes with a pore
size of 0.2 ym (15 mm syringe filter, Phenomenex). Anthocyanin
concentration and profile were determined with an HPLC (LC-
20AT, Shimadzu) equipped with a diode array detector (SPD-M
20 A, Shimadzu). Separation was performed using a C-18 column
(LiChroCART 250—4, Merck) maintained at 25 °C. Solvent A
was methanol, and solvent B perchloric acid (0.3%) in water with
a flow rate of 0.5 mL/min. The gradient of mobile phase A was as
follows: 0—32 min at 27%, 32—45 min at 67.5%, 45—50 min at
100%, and 50—60 min at 27%. Individual anthocyanins were
detected at 520 nm and identified by comparing the retention
time of each chromatographic peak with available data in the
literature.”" The concentration of individual anthocyanins was
expressed in oenin chloride equivalents as mg/g of fresh berry.

The analysis of tannins from skins and seeds was performed as
described in Herrera et al.” Briefly, 0.18 g of skin or seed powder
was added to 1.8 mL of a solution of acetone in water, formulated
in a 70:30 ratio (v/v), in a 2 mL microtube. Extraction was
performed in agitation for 24 h at room temperature. Then the
sample was centrifuged, a 1 mL aliquot of supernatant taken, and
the acetone evaporated via 1 h of speed vacuum. The residual
aqueous extract was adjusted to 1 mL with deionized water. The
protein precipitation assay”’ was utilized to measure skin and
seed tannins, which were expressed as mg per berry and mg per g
of fresh berry.

Determination of Methoxypyrazines. Standards and
Solvents Preparation. Standards used included 3-isobutyl-2-
methoxypyrazine (IBMP) with a purity of 99%; 2-isobutyl-3-
methoxy-d3-pyrazine ([*H,]-IBMP) with a purity of 99%; and 3-
isopropyl-2-methoxypyrazine (IPMP) with a purity of 99%.
Stock solutions of IBMP (250 mg/L), [*H;]-IBMP (500 mg/L),
and IPMP (280 mg/L) were prepared in methanol. A working
solution of IBMP and IPMP (IBMP = 50 ng/L + IPMP = 56 ng/
L) and one of [*H;]-IBMP (0.5 ug/L) were prepared in water
purified by a Milli-Q system (Bedford, MA).

Calibration standards were prepared in Milli-Q water purified
using working solutions of IBMP, IPMP, and [*H;]-IBMP. A
total of 3 g of NaCl were placed into a 20 mL SPME vial along
with a stir bar, and 6 mL of Milli-Q water, 2 mL of the working
solution of IBMP and IPMP, 2 mL of 4 M NaOH, and 100 uL of
the working solution of [*H;]-IBMP were added. The vial was
closed and placed onto a magnetic stir plate before the run to
dissolve the NaCl.

Sample Preparation and Chromatographic Run. A total of
3 g of NaCl were placed into a 20 mL SPME vial along with a stir
bar, followed by 2 g of grape powder, 6 mL of Milli-Q system
water, 2 mL of 4 M NaOH, and 100 pL of working solution of
[*H;]-IBMP. The vial was closed and placed onto a magnetic stir
plate before the run to dissolve the NaCl. The amount of grape
tissue to use for the MP analysis was determined by experiment,
whereby different aliquots (1, 2, and 3 g of grape powder) were
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tested. To keep the same head space in the vial, we increased the
volume of Milli-Q water reported above by 1 mL when 1 g of
grape powder was added and decreased by 1 mL when 3 g of
grape sample was added. The volume of NaOH and [*H,;]-IBMP
and the mass of NaCl were the same as described in the
preparation of the sample. Results were compared by paired t test
and, as it showed no significant difference among the samples, 2 g
of grape powder was used for sample analyses.

The concentration of methoxypyrazines was determined using
a gas chromatograph (Agilent Technologies 78904, Shanghai,
China) equipped with a Gerstel MPS2 multipurpose sampler
(Gerstel, Miilheim an der Ruhr, Germany) and two serially
connected columns, as HP 1 MS (Agilent Technologies, 30 m,
0.32 mm i.d, 0.25 um film thickness) and an HP INNOWAX
(Agilent Technologies, 30 m, 0.32 mm id, 025 ym film
thickness). The extraction was performed on fiber DVB/CAR/
PDMS (Supelco, Bellefonte, PA). For quantitative determi-
nation, retention time and mass spectrum in selective ion
monitoring mode (SIM) were used. The method is described in
detail in Suklje et al.”* Linearity was verified by using calibration
standards of different concentration levels (three repetitions for
one concentration level, 10 concentration levels for the
calibration curve). Linearity and range were determined by
multiple linear regressions using the F-test. Calibration curves
were derived using increasing amounts of IBMP and IPMP (both
0.8—160 ng/kg) in calibration standards. Good linearity was
obtained for both compounds: IBMP (R* = 0.9968) and IPMP
(R* = 0.9963). The limit of detection (LD) and the limit of
quantitation (LQ) were calculated from the calibration curve.
For both IBMP and IPMP, the LD was 0.7 ng/kg. The LQ for
IBMP and IPMP was 2.2 and 2.5 ng/kg, respectively. Recoveries
were obtained by analyzing spiked samples of grape powder (10
parallel samples per concentration level). The average of the
recoveries was calculated. The results are given in Tables S1 and
S2. To determine the optimal grape powder mass in the SPME
vial, we added different quantities of grape powder to an SPME
vial, and their effect on determined content was tested.

Microvinification and Wine Analyses. A total of nine
independent microvinifications, one from each experimental
plot, were performed as described in Herrera et al.”* Briefly, 20 kg
of grapes from each experimental plot were harvested manually
and transported nearby to the experimental winery of the
University of Udine, mechanically destemmed and crushed, and
transferred to 25 L glass fermentation containers. Musts were
fermented at 18 °C for 10 d on the skins and punched down twice
daily. After alcoholic fermentation, the wines were pressed and
25 mg/L of SO, added. Wines were racked twice, at 10 and 30 d
after the end of fermentation, and then immediately bottled in
0.5 L bottles closed with synthetic stoppers. Bottles were stored
at 10 °C for 4 months until chemical and sensory analyses were
performed.

The wine chemical parameters (alcohol, titratable acidity, pH,
malic and tartaric acid, and total extracts) were analyzed with a
WineScanTM FT120 Basic spectrometer (FOSS, Hillered,
Denmark), and MPs in wine samples were determined as
described in Suklje et al.** Wine color intensity (OD420 nm and
ODS520 nm), color hue (OD420 nm and OD520 nm),”” and the
concentrations of anthocyanins and tannins were determined by
spectrophotometry23 (Uvikon 922, Kontron Instruments).
Sensory analyses of the wines were performed as described in
Herrera et al.” considering the following attributes: color (color
intensity and hue), taste (acidity, bitterness, astringency, and
minerality), aroma (intensity, fruity, herbaceous, and spicy), and
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Table 1. Canopy and Yield Components in ‘Merlot’ Vines Subjected to Leaf-Removal Treatments in 2012 and 2013

treatment (T) season (S) interaction (T X S)
CONT LRBF LRAF significance® 2012 2013 significance significance

main shoot LA (m? per vine) 1.32 0.93 0.8 ns 1.02 1.01 ns *

lateral shoot LA (m? per vine) 329 3.52 342 ns 3.32 3.5 ns ns
total LA (m? per vine) 4.63 4.35 422 ns 4.34 4.46 ns ns
clusters per vine 10.5 11.1 10.8 ns 11.6 9.98 ns ns
flowers per cluster 662.2 599.8 631.0 ns 713.1 548.9 ns ns
berries per cluster 154.4 2" 116.7 b 151.5a * 1474 1344 ns ns
berry set (%) 239 20.9 254 ns 212 25.6 ns ns
cluster weight (g) 2155 a 1623 b 2130a * 217.1a 176.8 b * ns
yield (kg per vine) 1.96 1.60 1.98 ns 222a 148 b * ns
berry weight (g) 1.68 1.66 1.67 ns 147 b 1.87 a sk ns
rachis length (cm) 18.2 172 174 ns 18.7 16.5 ns ns
cluster compactness index (g/cm) 119 a 9.4d 12.1a * 11.6 10.6 ns ns
leaf area per yield (m?/kg) 249 2.69 244 ns 1.95 313 ns ns

“Data were analyzed through two-way mixed model ANOVA (ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001), and when differences
were significant, the means were separated using Tukey’s HSD test (p < 0.05). bDifferent letters (a, b) identify significantly different means. CONT,
untreated control; LRBF, leaf removal before flowering; LRAF, leaf removal after flowering.

retronasal (intensity, persistence, fruity, and herbaceous). A
scorecard was used to evaluate the experimental wines. The
samples were randomized and served to the panel in three
consecutive sets in the same day. Panelists could score each
attribute in a 1 (low) to 10 (high) intensity scale with the
exception of the attribute “color hue”, for which 1 represented
red-violet and 10 red-brown.

Statistical Analyses. Line scatters, histograms, and radar
charts were constructed using SigmaPlot 13 (Systat Software
GmbH, Erkrath, Germany). Software from SAS Institute Inc.
(JMP 7.0) was used for statistical analyses. All the data were
processed using a two-way mixed-model ANOVA, where the
year was considered as a random factor and the leaf-removal
treatment as a fixed factor. When differences among treatments
or years were significant, the means were separated using the
posthoc Tukey’s Honest Significant Difference (HSD) test (p <
0.05). In the case of significant interaction between the leaf-
removal treatment and the year, data were analyzed within each
year using a one-way ANOVA test. For the statistical analyses of
wine sensory results, the different attributes were subjected to a
mixed-model ANOVA with treatments as fixed effects and the
panelists and year as random factors.”® To test the difference
between treatments in the Botrytis bunch rot severity, we
subjected data to arcsine transformation and to a one-way
ANOVA.

B RESULTS

Leaf Area, Yield Components, and Cluster Health. Leaf-
area development was affected by the climatic conditions of the
two experimental seasons. In 2012, the low rainfall during May
slowed canopy development in the first part of the season (from
—20 to +20 d after flowering), and in 2013, the abundant rainfall
led to faster growth of canopy leaf area early in the season.

Prior to the LRBF treatment, the mean leaf area (LA) of the
main shoots in the vines were 0.42 and 0.66 m” per vine in 2012
and 2013, respectively, and the application of the treatment
reduced this area by 85% and 56% in 2012 and 2013, respectively.
Prior to the LRAF treatment, the LA of the main shoots of the
vines were 2.02 and 2.99 m’ per vine in 2012 and 2013,
respectively, and the LRAF reduced this area by 25% and 28% in
2012 and 2013, respectively. Hedging was performed later during
the season for a LA reduction for all treatments.
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In both years, despite a significant reduction of the leaf area of
the main shoots due to the leaf-removal treatments, TLA was
only transiently reduced by the LRBF at the time when the
treatment was applied and was not affected by LRAF. The TLA
was similar among treatments at harvest (Table 1). Surprisingly,
the lateral LA accounted for the 71, 79, and 81% of TLA in
CONT, LRBF, and LRAF, respectively (Table 1), but by
veraison, the canopy was already fully developed, and laterals
were not major competitors for photosynthates.

The number of flowers per cluster at flowering was similar in
all treatments, and the number of berries per cluster was
significantly reduced by LRBF (Table 1). Even if the differences
between seasons did not prove significant, in 2013 the number of
flowers per cluster was lower than in 2012, as well as the number
of berries per cluster. This condition consequently resulted in a
general lower yield in 2013 across treatments (Table 1). As an
average of the two seasons, the CONT vines yielded 1.96 kg per
vine, and the CONT mean cluster weight was 215.5 g (Table 1).
The leaf-removal treatments did not significantly affect the vine
yield, even if an 18% yield reduction was observed on average in
LRBF vines (Table 1). Cluster weight was significantly lower in
2013 than in 2012 and was significantly reduced by the LRBF
treatment in both seasons (Table 1). Finally, berry weight and
rachis length were not affected by the treatments, and a reduction
of cluster compactness (—22%) was observed in LRBF as
compared with CONT and LRAF.

The crop load, expressed as leaf area per yield, was generally
lower in 2012 than in 2013 due to the higher yield per vine in
2012, and no differences among treatments were found (Table
1). In 2012, no Botrytis rot was observed on clusters (data not
shown). Conversely, in 2013, substantial rainfall occurred near
harvest, stimulating the development of Botrytis rot in the clusters
of all treatments. It is noteworthy that, in this season, both leaf
removals before and after flowering reduced the severity of
Botrytis rot significantly compared to the CONT (Figure 1).

Berry Composition. Leaf-removal treatments applied in this
study did not affect the TSS, pH, or TA of the berry juice at
harvest (Table 2). However, differences among treatments were
observed during berry development and particularly at early
stages of fruit ripening.

Anthocyanins and Tannins. Leaf removal did not affect
either the concentrations of anthocyanins and tannins at harvest
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Figure 1. Effect of leaf removal on Botrytis severity in 2013. Data were
analyzed with a one-way ANOVA test, and means were separated with
Tukey’s HSD test (p < 0.05). CONT, untreated control; LRBF, leaf
removal before flowering; LRAF, leaf removal after flowering.

(Table 2) or the anthocyanin profile, i.e., the relative abundance
of each anthocyanin accumulated in the berry (Table 3). Both the
total anthocyanin concentration and the malvidin-3-glucosyde
concentration, the major anthocyanin accumulated in ‘Merlot’,
were significantly higher in 2012 than in 2013 (Table 2,3). In
2012, the accumulation of anthocyanins increased rapidly from
54 DAF to 95 DAF and then slowed, increasing slightly until
harvest (111 DAF) (Figure 2A). In 2013, the trend of
anthocyanin accumulation was similar to that of 2012; however,
maximum levels of anthocyanins were observed at 102 DAF, 9
days before harvest (Figure 2B). Leaf-removal treatments did not
affect anthocyanin accumulation during berry development
except at 54 DAA in 2012, when anthocyanin concentration
was higher in LRBF than in both CONT and LRAF (Figure 2A).

Skin tannins were generally lower in 2013 than in 2012 (Figure
2C,D and Table 2), and the skin tannin content expressed on a
per berry basis was, likewise, lower in 2013 than in 2012 (Table
2). Although the concentration of skin tannins decreased with
berry development in both seasons (Figure 2C,D), the leaf-
removal treatments did not alter the concentration of skin and
seed tannins in comparison to the CONT.

The pattern of accumulation of seed tannins was similar to that
of skin tannins (Figure 2E,F) with seed-tannin concentration at
harvest lower in 2013 than in 2012 (Table 2).

Methoxypyrazines. Concentration of IPMP in the berry was
below the LOQ_for all treatments during the late stages of
development and at harvest; therefore, these data are not
reported. The major MP detected in the berries was IBMP. A
dramatic reduction of IBMP concentration was observed from
veraison to harvest in both seasons for all treatments. Both leaf-

removal treatments delivered a significant decrease in IBMP
concentration at different stages of fruit development (Figure
3A,B). However, at harvest, the concentration of IBMP was
significantly lower only in LRAF, while no differences were
ascertained for LRBF (Table 2).

Wine Analysis and Sensory Evaluation. For most of the
compositional parameters analyzed on the finished wines, no
differences among treatments were revealed (Table 4). However,
a significant interaction year X treatment was measured for the
concentration of IBMP in the derived wines, and therefore, a
one-way ANOVA was performed within each season. From this
analysis, the CONT wines had the highest IBMP concentration
in both seasons (Figure 4B). Interestingly, in 2012, LRBF wines
had a lower concentration of IBMP than LRAF wines, and in
2013, no differences were observed.

The concentration of anthocyanins in the wines was not
significantly affected by the treatments, while in case of tannins a
significant treatment and season interaction was observed (Table
4). The comparison of the treatments within each season
revealed that the concentration of tannins in wines was
significantly higher in LRBF than in CONT in both seasons
and higher in LRAF than in CONT only in 2013 (Figure 4B).

The sensory analyses of the wines revealed few differences
between treatments (Figure 5). Among sensory attributes, only
astringency was perceived significantly higher in LRAF than in
LRBF and CONT. Finally, despite the lack of differences in
anthocyanin concentrations and profiles, color intensity was
judged to be significantly higher in LRBF and LRAF wines than
in those from the CONT. Moreover, differences among seasons
were tested significant for most of the sensory traits analyzed, and
no interactions between treatment and season were observed for
any of the parameters tested.

B DISCUSSION

Leaf removal applied before flowering reduced cluster compact-
ness, cluster weight, and Botrytis rot on the clusters at harvest.
When applied after flowering, the leaf-removal treatment
successfully reduced Botrytis rot severity while not affecting
yield components significantly. Leaf removal before flowering
reduced fruit set and, hence, the number of berries per cluster.
Similar experiments carried out on ‘Tempranillo’,'® ‘Graciano’
and ‘Carignan’,27 and in ‘Pinot noir’,'” in which leaves were
removed ca. 10 days before flowering, indicated that the
reduction in the number of berries per cluster also translates
into lower yield. In our study, a significant reduction of yield was
not observed when the statistical analysis considered the year as a
random factor. Indeed, examining the data within each season, a

Table 2. Grape Composition in ‘Merlot’ Vines Subjected to Leaf-Removal Treatments in 2012 and 2013

treatment (T)

CONT LRBF LRAF
total soluble solids (°Brix) 21.3 20.5 21.0
titratable acidity 598 6.67 5.82
pH 3.28 3.26 3.31
total anthocyanins (mg/g berry) 1.04 1.06 1.09
skin tannins (mg/g berry) 1.64 1.82 1.7
seed tannins (mg/g berry) 235 2.63 2.67
IBMP (pg/g berry) 4.84a 4.14ab 3.76 b

season (S) interaction (T X S)
significance® 2012 2013 significance significance
ns 21.2 20.7 ns ns
ns 5.82 6.49 ns ns
ns 335" 322b o ns
ns 124 a 0.88 a * ns
ns 2.03a 142 b w3k ns
ns 3.03a 2.07 b * ns
* 4.69 a 371b ok ns

“Data were analyzed through two-way mixed model ANOVA (ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001), and when differences
were significant, the means were separated using Tukey’s HSD test (p < 0.05). bDifferent letters (a, b) identify significantly different means. CONT,
untreated control; LRBF, leaf removal before flowering; LRAF, leaf removal after flowering.
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Table 3. Anthocyanin Profile at Harvest of ‘Merlot’ Grapes Subjected to Leaf-Removal Treatments in 2012 and 2013

treatment (T)

CONT LRBF LRAF
del-3-glu (mg/g berry) 0.10 0.11 0.10
cya-3-glu (mg/g berry) 0.03 0.03 0.02
pet-3-glu (mg/g berry) 0.09 0.10 0.09
peo-3-glu (mg/g berry) 0.07 0.08 0.07
mal-3-glu (mg/g berry) 0.40 041 0.44
total 3-glu (mg/g berry) 0.68 0.73 0.73
total ac-3-glu (mg/g berry) 0.18 0.13 0.18
total p-coum-3-glu (mg/g berry) 0.18 0.19 0.19
disubstituted forms (% of tot-3-glu) 14.37 15.71 12.32
trisubstituted forms (% of tot-3-glu) 85.63 84.29 87.68
OH-substituted forms (% of tot-3-glu) 18.37 19.29 17.65
OCH;-substituted forms (% of tot-3-glu) 81.63 80.71 82.35

season (S) interaction (T X S)
significance” 2012 2013 significance significance

ns 0.12 0.09 ns ns
ns 0.03 0.03 ns ns
ns 0.11 0.08 ns ns
ns 0.08 0.06 ns ns
ns 0.50 a” 0.34b * ns
ns 0.83 0.59 ns *

ns 0.18 0.15 ns ns
ns 023 b 0.14 a * ns
ns 13.00 15.26 ns ns
ns 87.00 74.74 ns ns
ns 17.60 19.27 ns ns
ns 82.40 80.73 ns ns

“Data were analyzed through two-way mixed model ANOVA (ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001), and when differences
were significant, the means were separated using Tukey’s HSD test (p < 0.0S). bDifferent letters (a, b) identify significantly different means. CONT,
untreated control; LRBF, leaf removal before flowering; LRAF, leaf removal after flowering.
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Figure 2. Evolution of anthocyanin (A,B), skin tannin (C,D), and seed
tannin (E,F) concentrations in grapes of ‘Merlot’ vines subjected to
different leaf-removal treatments in 2012 (left side: A, C, and E) and
2013 (right side: B, D, and F). Within each sampling date, data were
analyzed with a one-way ANOVA test and means were separated with
Tukey’s HSD test (p < 0.05). No significant differences were detected.
(®) CONT, untreated control; (O) LRBF, leaf removal before
flowering; (W) LRAF, leaf removal after flowering. Dotted line indicates
the time of veraison.

significant reduction of the yield in LRBF vines was observed in
2012 but not in 2013. The lack of significance in the latter season
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Figure 3. Evolution of IBMP concentration in grapes of ‘Merlot’ vines
subjected to different leaf-removal treatment in 2012 (A) and 2013 (B).
Within each sampling date, data were analyzed with a one-way ANOVA
test, and means were separated with Tukey’s HSD test (p < 0.05).
Different letters identify significantly different means. (®) CONT,
untreated control; (O) LRBF, leaf removal before flowering; (V)
LRAF, leaf removal after flowering. Dotted line indicates the time of
veraison.

was due to the severity of Botrytis rot on CONT clusters. Indeed,
higher rainfalls characterized 2013 during the last stages of
ripening (September) and along with diffused Botrytis rot in the
vineyard. In this season, leaf removal before flowering effectively
improved cluster health (Figure 1). Rotten berries normally lose
part of their water content and, as a consequence, the berry
weight decreases. The control and LRAF clusters had a relatively
higher number of rotten berries compared to LRBF, and this
most likely determined the reduction of cluster weight and yield
in CONT and LRAF vines, as well as the lack of significance in
the vine yield between LRBF and the other two treatments.
Despite the fact that LRBF did reduce cluster compactness, the
severity of Botrytis in this treatment was similar than the one
observed in LRAF, even though the latter treatment did not
modify cluster architecture. This indicates that, in a variety
characterized by a relatively loose cluster, such as ‘Merlot’, leaf-
removal treatments reduce the severity of Botrytis, mostly by
improving the cluster microclimate and by favoring the pesticide
penetration.

Neither of the leaf-removal treatments affected TSS and TA at
harvest; however, the LRBF treatment resulted in higher TA at
early stages of fruit ripening in both seasons and lower TSS at 78
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Table 4. Composition of ‘Merlot’ Wine Produced from Grapes of Vines Subjected to Leaf-Removal Treatments in 2012 and 2013

treatment (T) season (S) interaction (T X S)
CONT LRBF LRAF significance® 2012 2013 significance significance

alcohol 12.4 11.9 124 ns 12.3 122 ns ns
titratable acidity (g/L) 7.03 7.10 7.20 ns 7.58 a” 6.64 b ok ns
pH 3.28 3.24 3.24 ns 3.27 §5.31 ns ns
malic acid (g/L) 1.13 1.15 1.07 ns 129a 0.94b * ns
tartaric acid (g/L) 3.03 327 3.30 ns 2.87b 353 a * ns
tannins (mg/L) 262.88 376.12 341.40 ns 233.38b 42022 a * *

anthocyanins (mg/L) 192.09 201.42 208.33 ns 249.85 a 151.37 b o ns
IBMP (ng/L) 3.53 242 245 ns 2.51 3.1 ns ok

“Data were analyzed through two-way mixed model ANOVA (ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001), and when differences
were significant, the means were separated using Tukey’s HSD test (p < 0.05). bDifferent letters (a, b) identify significantly different means. CONT,
untreated control; LRBF, leaf removal before flowering; LRAF, leaf removal after flowering.
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Figure 4. Concentration of tannin (A) and IBMP (B) in the wines
produced from grapes of ‘Merlot’ vines subjected to different leaf-
removal treatment in 2012 and 2013. Within each year, the means were
separated with Tukey’s HSD test (p < 0.05). Different letters identify
significantly different means.

DAA in 2013. The documented effects of leaf removal before
flowering on TSS and TA evolution in the berry are controversial.
Although an increase of TSS under leaf removal before flowerin
was observed on ‘Sangiovese’, “Trebbiano’,”® and ‘Tempranillo’,
other studies have indicated no effects suggesting that the leaf
area-to-yield ratio, the cultivar, or the climate conditions may
modulate the effects of these treatments.'”*° Similar to TSS, the
impact of leaf removal before or after flowering on TA is still
controversial. Experiments carried out on ‘Pinot noir’,
“Trebbiano’, ‘Merlot’ (V. vinifera L.), ‘Cabernet Sauvignon’, and
‘Sangiovese’ reported no impact of this technique on TA,">***’
while an increase of TA was shown under leaf removal before
flowering in ‘Sangiovese” and in “Tempranillo’.”® On the basis of
the data reported in the experiments mentioned above, no
significant difference was found between treatments when the
leaf area-to-yield ratio was higher than 1 m?/kg, similar to the
levels observed in our experiment (Table 1).

The concentrations of anthocyanins and tannins were nearly
unaffected by leaf-removal treatments. Even if solar radiation was
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Figure S. Sensory characteristics of ‘Merlot” wines obtained from grapes
collected on vines subjected to different leaf-removal treatments. Data
were processed through two-ways mixed-model ANOVA (ns, not
significant; ¥, p < 0.05). (@) CONT, untreated control; (O) LRBF, leaf
removal before flowering; (W) LRAF, leaf removal after flowering; TA,
taste attributes; CA, color attributes; RA, retronasal attributes; OA,
olfactive attributes. Differences between treatments are reported in
Table S3.

not directly measured, the clusters from the leaf-removal
treatments were visibly more exposed to sunlight during the
summer (visual assessment). Li%ht is a pivotal factor for the
biosynthesis of anthocyanins,”””" and it is well-known that
cluster exposure to sunlight does not affect tannins in the same
way.'#'*! However, detailed studies on the impact of light on
anthocyanin production have shown that the effect of light
exposure is not consistent across seasons.’” Previous studies have
demonstrated a positive impact of leaf removal imposed before
or after ﬂowerin§ on anthocyanin and phenolic accumulation in
the berry®'®*”*® showing an uncoupling of anthocyanin
biosynthesis, assessed via expression analysis of flavonoid
genes, with other primary and secondary metabolisms.”* This
anthocyanin increase is thought to be caused by a better cluster
microclimate, higher solar radiation on the clusters, and, in the
case of leaf removal before flowering, by the reduction of
yield'”** and by an increased relative skin mass.”® According to
Kliewer and Dokoozlian,'” the leaf area-to-yield ratio required
for the maximum level of TSS and berry coloration at harvest
ranged from 0.8 to 1.2 m?/ kg. In our experiment, the LA/Y ratio
was above the optimal range in all treatments, suggesting no
physiological limitation for the vines.'” Moreover, our previous
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study in ‘Merlot” indicated that even significant reductions of this
ratio (from 1.5 to 1.0 m*/kg) do not have any significant effect on
anthocyanin accumulation in the berry,”” suggesting a lack of
relationship between the LA/Y ratio and anthocyanin accumu-
lation in this variety.

Besides the total amount of anthocyanin, environmental cues,
and viticultural practices can also affect the anthocyanin profile,
i.e., the relative abundance of the different anthocyanins. In this
study, the anthocyanin profile was not modified by any of the
leaf-removal treatments. The relative abundance of di- and tri-
and OH- and OCHj-substituted anthocyanins was unaffected by
leaf removal when applied before flowering (Table 3), in contrast
to previous studies. "> As for tannin content, our data support
the results of previous studies indicating that viticultural practices
have a limited effect on skin and seed tannin content.'****

Both leaf-removal treatments affected the concentration of
MPs during berry development; at harvest, significantly lower
values were measured in LRAF berries (Table 2). The MP
concentration in the berry can be affected by multiple factors,
specifically light and temperature,z’9’36_39 crop level,* vigor, and
high leaf area-to-yield ratio.”*' Remarkably, leaf-removal treat-
ments have been proven effective for reducing the concentration,
particularly in cool climates.'”*”** Roujou de Boubee™ and
Marais et al.** reported that leaf removal applied before veraison
resulted in a 68% and a 50% reduction of the concentration of
IBMP at harvest, respectively. Scheiner et al.” highlighted that
both the timing and the intensity of leaf removal affect the final
concentration of IBMP in grapes. Earlier application of leaf
removal (10 DAF) resulted in a greater reduction than later ones
(60 DAF), and a high intensity of treatment (first five leaves
removed) is more effective than a low intensity (three leaves
removed) in reducing the concentration of these compounds at
harvest. In accordance with previous studies, in our study the
IBMP concentration in the wines produced from vines subjected
to leaf removal had a significantly lower concentration of IBMP.
However, these differences in concentration did not affect the
sensory features of the wines.

A higher concentration of tannins was observed in wines
produced from LRBF and LRAF grapes in 2013 and from LRAF
grapes in 2012 in comparison to the CONT. These results are
consistent with previous findings reporting that sunlight cluster
exposure improve tannin extractability and results in higher
tannin concentrations in wines.**’

Differences in tannin composition”’ could have played a role
in determining the slightly higher astringency of LRAF wines.
Similarly, copigmentation of anthocyanin with flavonoid and
nonflavonoid compounds, among others, could have promoted a
slightly higher color intensity in LRBF wines."**” As is known,
flavonols are major copigments in red wines. Although we did
not investigate flavonols in this study’s grapes and wines, a higher
concentration is normally observed in grapes exposed to
sunlight,‘%‘32 and thus, it is likely that leaf-removal treatments
favored a higher concentration of these compounds in the wines
and, consequently, a higher presence of flavonol—anthocyanin
copigments.

A significant reduction in the concentration of MPs in the
LRAF berries was observed at harvest and in the derived wines.

In conclusion, our data indicate that leaf removal before
flowering can be used as an effective strategy to reduce cluster
compactness and Botrytis rot, to reduce the concentration of
methoxypyrazines in grape and wine, and to improve wine color
intensity but at the cost of a reduction in cluster weight and vine
yield. Although this approach can be used as an alternative to
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manual cluster thinning to reduce yield and cluster weight in
‘Merlot’ (V. vinifera L.) grapes, the results of this study indicate
that when the leaf area-to-yield ratio is not limiting sugar
accumulation, this reduction in yield determined by LRBF is also
not associated with major benefits for grape and wine quality.

These results do not exclude that under higher crop-load
levels, LRBF could be a valuable tool for improving fruit ripening
and composition in ‘Merlot’. Finally, leaf removal applied after
flowering also improved cluster health, lowering incidence of
Botrytis, and decreased IBMP without affecting yield and cluster
weight. However, the differences observed in wine composition
suggest that yield reduction via LRBF can be profitable for an
improvement in wine quality, even in vines with moderate crops
sizes.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jafc.6b01013.

Table S1: recoveries of the method for the determination
of IBMP in grapes. Table S2: recoveries of the method for
the determination of IPMP in grapes. Table S3: evolution
of main, lateral, and total leaf area of Merlot vines exposed
to leaf-removal treatments. Table S4: sensory features of
‘Merlot’ wines produced from grapes of vines subjected to
leaf removal in 2012 and 2013. Figure S1: monthly
distribution of rainfall (A), mean temperature (B), and
solar radiation (C) during the seasons 2012 and 2013 in
comparison with the historical average 1991—2013. Figure
S2: evolution of soluble solids, titratable acidity, and of pH
in Merlot grapes exposed to leaf-removal treatments in
2012 and 2013. (PDF)

H AUTHOR INFORMATION

Corresponding Author
*Tel: +39-0432-558628; fax: +39-0432-558500; e-mail: paolo.
sivilotti@uniud.it.

Funding

This research was partially funded by the EU Cross-Border
Cooperation Program Italy-Slovenia 2007—2013 (VISO) and by
the University of British Columbia and the Natural Sciences and
Engineering Research Council of Canada (project 10R18459).

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

We thank the owner of Meroi winery for the use of their vineyard
and Mirko Degan for the assistance during the experiment. We
also thank Piero Basso, Edoardo Caprara, Davide Cisilino,
Alberto Cristante, and Matteo Velenosi for the technical help
during field measurements, sample collection, and laboratory
analysis and Dr. Alan Green for critical reading of the manuscript.

B REFERENCES

(1) Bubola, M; Per$uri¢, D.; Kovaevi¢ Gani¢, K. Impact of cluster
thinning on productive characteristics and wine phenolic composition of
cv. Merlot. J. Food, Agric. Environ. 2011, 9, 36—39.

(2) Scheiner, J. J.; Sacks, G. L.; Pan, B.; Ennahli, S.; Tarlton, L.; Wise,
A,; Lerch, S. D.; Vanden Heuvel, J. E. Impact of severity and timing of
basal leaf removal on 3-isobutyl-2-methoxypyrazine concentrations in
red winegrapes. Am. J. Enol. Vitic. 2010, 61, 358—364.

DOI: 10.1021/acs jafc.6b01013
J. Agric. Food Chem. 2016, 64, 4487—4496


http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jafc.6b01013
http://pubs.acs.org/doi/suppl/10.1021/acs.jafc.6b01013/suppl_file/jf6b01013_si_001.pdf
mailto:paolo.sivilotti@uniud.it
mailto:paolo.sivilotti@uniud.it
http://dx.doi.org/10.1021/acs.jafc.6b01013

Journal of Agricultural and Food Chemistry

(3) Haselgrove, L.; Botting, D.; Heeswijck, R.; Hoj, P. B,; Dry, P. R;
Ford, C; Land, P. G. I. Canopy microclimate and berry composition:
The effect of bunch exposure on the phenolic composition of Vitis
vinifera L cv. Shiraz grape berries. Aust. J. Grape Wine Res. 2000, 6, 141—
149.

(4) Diago, M. P.; Ayestaran, B.; Guadalupe, Z.; Poni, S.; Tardaguila, J.
Impact of prebloom and fruit set basal leaf removal on the flavonol and
anthocyanin composition of Tempranillo grapes. Am. J. Enol. Vitic. 2012,
63, 367—376.

(S) Noble, A. C.; Elliott-Fisk, D. L.; Allen, M. S. Vegetative Flavor and
Methoxypyrazines in Cabernet Sauvignon. In Fruit Flavors: Biogenesis,
characterisation, and authentication; Rousoff, R. L., Leahy, M. M., Eds.;
ACS Symposium Series: Washington, DC, 1995; pp 226—234.

(6) Kotseridis, Y.; Anocibar Beloqui, A.; Bertrand, A.; Doazan, J. P. An
analytical method for studying the volatile compounds of Merlot noir
clone wines. Am. J. Enol. Vitic. 1998, 49, 44—48.

(7) Helwi, P.; Habran, A.; Guillaumie, S.; Thibon, C.; Hilbert, G.;
Gomes, E.; Delrot, S.; Darriet, P.; Van Leeuwen, C. Vine Nitrogen Status
Does Not Have a Direct Impact on 2-Methoxy-3-isobutylpyrazine in
Grape Berries and Wines. J. Agric. Food Chem. 20185, 63, 9789—9802.

(8) Lacey, M. J; Allen, M. S,; Harris, R. L. N,; Brown, W. V.
Methoxypyrazines in Sauvignon blanc Grapes and Wines. Am. J. Enol.
Vitic. 1991, 42, 103—108.

(9) Ryona, L; Pan, B. S,; Intrigliolo, D. S.; Lakso, A. N.; Sacks, G. L.
Effects of cluster light exposure on 3-isobutyl-2-methoxypyrazine
accumulation and degradation patterns in red wine grapes (Vitis vinifera
L. Cv. Cabernet Franc). J. Agric. Food Chem. 2008, 56, 10838—10846.

(10) Suklje, K; Antalick, G.; Coetzee, Z.; Schmidtke, L. M.; Basa
Cesnik, H.; Brandt, J.; du Toit, W. J.; Lisjak, K.; Deloire, A. Effect of leaf
removal and ultraviolet radiation on the composition and sensory
perception of Vitis vinifera L. cv. Sauvignon Blanc wine. Aust. J. Grape
Wine Res. 2014, 20, 223—233.

(11) Palliotti, A,; Gardi, T.; Berrios, J. G.; Civardi, S.; Poni, S. Early
source limitation as a tool for yield control and wine quality
improvement in a high-yielding red Vitis vinifera L. cultivar. Sci. Hortic.
2012, 145, 10—16.

(12) Sternad Lemut, M.; Trost, K.; Sivilotti, P.; Arapitsas, P.; Vrhovsek,
U. Early versus late leaf removal strategies for Pinot Noir (Vitis vinifera
L.): effect on colour-related phenolics in young wines following
alcoholic fermentation. J. Sci. Food Agric. 2013, 93, 3670—3681.

(13) Sternad Lemut, M.; Trost, K.; Sivilotti, P.; Vrhovsek, U. Pinot
Noir grape colour related phenolics as affected by leaf removal
treatments in the Vipava Valley. J. Food Compos. Anal. 2011, 24, 777—
784.

(14) Sternad Lemut, M,; Sivilotti, P.; Franceschi, P.; Wehrens, R;
Vrhovsek, U. Use of metabolic profiling to study grape skin polyphenol
behavior as a result of canopy microclimate manipulation in a “Pinot
noir” vineyard. J. Agric. Food Chem. 2013, 61, 8976—8986.

(15) Lee, J.; Skinkis, P. Oregon “Pinot noir” grape anthocyanin
enhancement by early leaf removal. Food Chem. 2013, 139, 893—901.

(16) Risco, D.; Pérez, D.; Yeves, A.; Castel, J. R; Intrigliolo, D. S. Early
defoliation in a temperate warm and semi-arid Tempranillo vineyard:
vine performance and grape composition. Aust. J. Grape Wine Res. 2014,
20, 111-122.

(17) Kliewer, W. M.; Dokoozlian, N. K. Leaf area/crop weight ratios of
grapevines: Influence on fruit composition and wine quality. Am. J. Enol.
Vitic. 2008, 56, 170—181.

(18) Zoecklein, B. W.; Wolf, T. K; Duncan, N. W.; Judge, J. M.; Cook,
M. K. Effects of fruit zone leaf removal on yield, fruit composition, and
fruit rot incidence of Chardonnay and white Riesling (Vitis vinifera L.)
grapes. Am. J. Enol. Vitic. 1992, 43, 139—148.

(19) Sternad Lemut, M.; Sivilotti, P.; Butinar, L.; Laganis, J.; Vrhovsek,
U. Pre-flowering leaf removal alters grape microbial population and
offers good potential for a more sustainable and cost-effective
management of a Pinot Noir vineyard. Aust. J. Grape Wine Res. 2015,
21, 439—450.

(20) Gatti, M.; Garavani, A.; Cantatore, A.; Parisi, M. G.; Bobeica, N.;
Merli, M. C,; Vercesi, A.; Poni, S. Interactions of summer pruning

4495

techniques and vine performance in the white Vitis vinifera cv. Ortrugo.
Aust. J. Grape Wine Res. 2015, 21, 80—89.

(21) Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R.
Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food
Chem. 2006, 54, 7692—7702.

(22) Herrera, J. C.; Bucchetti, B.; Sabbatini, P.; Comuzzo, P.; Zulini, L.;
Vecchione, A.; Peterlunger, E.; Castellarin, S. D. Effect of water deficit
and severe shoot trimming on the composition of Vitis vinifera L. Merlot
grapes and wines. Aust. ]. Grape Wine Res. 20185, 21, 254—265.

(23) Harbertson, J. F.; Picciotto, E. A.; Adams, D. O. Measurement of
Polymeric Pigments in Grape Berry Extracts and Wines Using a Protein
Precipitation Assay Combined with Bisulfite Bleaching. Am. J. Enol. Vitic.
2003, 54, 301—306.

(24) éuklje, K; Lisjak, K; Basa Cesnik, H,; Janes, L.; Du Toit, W;
Coetzee, Z.; Vanzo, A; Deloire, A. Classification of grape berries
according to diameter and total soluble solids to study the effect of light
and temperature on methoxypyrazine, glutathione, and hydroxycinna-
mate evolution during ripening of sauvignon blanc (Vitis vinifera L.). J.
Agric. Food Chem. 2012, 60, 9454—9461.

(25) Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D.
Traité d'oenologie. 2. Chemie du vin. Stabilisation et traitements (Dunod:
Paris, France)., 2nd ed.; Dunod: Paris, 2004.

(26) Nes, T.; Langsrud, @. Fixed or random assessors in sensory
profiling? Food Qual. Prefer. 1998, 9, 145—152.

(27) Tardaguila, J.; de Toda, F. M.; Poni, S.; Diago, M. P. Impact of
early leaf removal on yield and fruit and wine composition of Vitis
vinifera L. Graciano and Carignan. Am. J. Enol. Vitic. 2010, 61, 372—381.

(28) Poni, S.; Casalini, L.; Bernizzoni, F.; Civardi, S.; Intrieri, C. Effects
of early defoliation on shoot photosynthesis, yield components, and
grape composition. Am. J. Enol. Vitic. 2006, 57, 397—407.

(29) Kotseridis, Y.; Georgiadou, A.; Tikos, P.; Kallithraka, S.;
Koundouras, S. Effects of severity of post-flowering leaf removal on
berry growth and composition of three red Vitis vinifera L. cultivars
grown under semiarid conditions. J. Agric. Food Chem. 2012, 60, 6000—
6010.

(30) Matsuyama, S.; Tanzawa, F.; Kobayashi, H.; Suzuki, S.; Takata, R.;
Saito, H. Leaf Removal Accelerated Accumulation of Delphinidin-based
Anthocyanins in “Muscat Bailey A” [ Vitis X labruscana (Bailey) and Vitis
vinifera (Muscat Hamburg) ] Grape Skin. J. Jpn. Soc. Hortic. Sci. 2014, 83,
17-22.

(31) Downey, O. M.; Dokoozlian, K. N.; Krstic, P. M. Cultural Practice
and Environmental Impacts on the Flavonoid Composition of Grapes
and Wine: A Review of Recent Research. Am. J. Enol. Vitic. 2006, 57,
257-268.

(32) Downey, M. O.; Harvey, J. S.; Robinson, S. P. The effect of bunch
shading on berry development and flavonoid accumulation in Shiraz
grapes. Aust. . Grape Wine Res. 2004, 10, 55—-73.

(33) Gatti, M.; Bernizzoni, F.; Civardi, S.; Poni, S. Effects of cluster
thinning and preflowering leaf removal on growth and grape
composition in cv. Sangiovese. Am. J. Enol. Vitic. 2012, 63, 325—332.

(34) Pastore, C.; Zenoni, S.; Fasoli, M.; Pezzotti, M.; Tornielli, G. B.;
Filippetti, I. Selective defoliation affects plant growth, fruit transcrip-
tional ripening program and flavonoid metabolism in grapevine. BMC
Plant Biol. 2013, 13, 30.

(35) Feng, H.; Yuan, F.; Skinkis, P. A.; Qian, M. C. Influence of cluster
zone leaf removal on Pinot noir grape chemical and volatile
composition. Food Chem. 2014, 173, 414—423.

(36) Koch, A.; Ebeler, S. E,; Williams, L. E.; Matthews, M. A. Fruit
ripening in Vitis vinifera: light intensity before and not during ripening
determines the concentration of 2-methoxy-3-isobutylpyrazine in
Cabernet Sauvignon berries. Physiol. Plant. 2012, 145, 275—285.

(37) Falcdo, L. D.; De Revel, G.; Perello, M. C.; Moutsiou, A.; Zanus,
M. C,; Bordignon-Luiz, M. T. A survey of seasonal temperatures and
vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-
norisoprenoids, and the sensory profile of Brazilian Cabernet Sauvignon
wines. J. Agric. Food Chem. 2007, 55, 3605—3612.

(38) Hashizume, K.; Samuta, T. Grape maturity and light exposure
affect berry methoxypyrazine concentration. Am. J. Enol. Vitic. 1999, S0,
194—-198.

DOI: 10.1021/acs jafc.6b01013
J. Agric. Food Chem. 2016, 64, 4487—4496


http://dx.doi.org/10.1021/acs.jafc.6b01013

Journal of Agricultural and Food Chemistry

(39) Dunlevy, J. D.; Soole, K. L.; Perkins, M. V.; Nicholson, E. L.;
Maffei, S. M.; Boss, P. K. Determining the Methoxypyrazine
Biosynthesis Variables Affected by Light Exposure and Crop Level in
Cabernet Sauvignon. Am. J. Enol. Vitic. 2013, 64, 450—458.

(40) Chapman, D. M.; Thorngate, J. H.; Matthews, M. a; Guinard, J.-
X.; Ebeler, S. E. Yield effects on 2-methoxy-3-isobutylpyrazine
concentration in Cabernet Sauvignon using a solid phase micro-
extraction gas chromatography/mass spectrometry method. J. Agric.
Food Chem. 2004, 52, 5431—5435.

(41) §uklje, K; Gobler, N.; Coetzee, Z.; Lisjak, K; Deloire, A.
Manipulating light in the fruit zone improves wine quality. Pract. Winer.
Vineyard 2014, 25, 27—34.

(42) Mosetti, D.; Herrera, J. C.; Sabbatini, P.; Green, A.; Alberti, G.;
Peterlunger, E.; Lisjak, K.; Castellarin, S. D. Impact of leaf removal after
berry set on fruit composition and bunch rot in ’ Sauvignon blanc . Vitis
2016, 55, 57—64.

(43) Roujou de Boubée, D.; Cumsille, A. M.; Pons, M.; Dubordieu, D.
Location of 2-methoxy-3-isobutylpirazine in Cabernet sauvignon
bunches and its extractability during vinification. Am. J. Enol. Vitic.
2002, 53, 1-S.

(44) Marais, J.; Swart, R. Sensory impact of 2-Methoxy-3-
Isobutylpyrazine and 4-Mercapto-4-Methylpentan-2-one added to a
neutral Sauvignon Blanc wine. South African J. Enol. Vitic. 1999, 20, 77—
79.

(45) Kemp, B. S.; Harrison, R; Creasy, G. L. Effect of mechanical leaf
removal and its timing on flavan-3-ol composition and concentrations in
Vitis vinifera L. cv. Pinot Noir wine. Aust. J. Grape Wine Res. 2011, 17,
270-279.

(46) Song, J.; Smart, R.;; Wang, H.; Dambergs, B.; Sparrow, A.; Qian,
M. C. Effect of grape bunch sunlight exposure and UV radiation on
phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine.
Food Chem. 2015, 173, 424—431.

(47) Chira, K;; Schmauch, G.; Saucier, C.; Fabre, S.; Teissedre, P. L.
Grape variety effect on proanthocyanidin composition and sensory
perception of skin and seed tannin extracts from Bordeaux wine grapes
(Cabernet Sauvignon and Merlot) for two consecutive vintages (2006
and 2007). J. Agric. Food Chem. 2009, 57, 545—553.

(48) Gomez-Miguez, M.; Gonzalez-Manzano, S.; Escribano-BailoN,
M. T.; Heredia, F. J.; Santos-Buelga, C. Influence of different phenolic
copigments on the color of malvidin 3-glucoside. J. Agric. Food Chem.
2006, 54, 5422—5429.

(49) Bimpilas, A.; Panagopoulou, M.; Tsimogiannis, D.; Oreopoulou,
V. Anthocyanin copigmentation and color of wine: The effect of
naturally obtained hydroxycinnamic acids as cofactors. Food Chem.
2016, 197, 39—46.

4496

DOI: 10.1021/acs jafc.6b01013
J. Agric. Food Chem. 2016, 64, 4487—4496


http://dx.doi.org/10.1021/acs.jafc.6b01013

