121 research outputs found

    Mesenchymal stem cells with increased stromal cell-derived factor 1 expression enhanced fracture healing

    Get PDF
    Treatment of critical size bone defects pose a challenge in orthopedics. Stem cell therapy together with cytokines has the potential to improve bone repair as they cause the migration and homing of stem cells to the defect site. However, the engraftment, participation, and recruitment of other cells within the regenerating tissue are important. To enhance stem cell involvement, this study investigated overexpression of stem cells with stromal cell-derived factor 1 (SDF-1) using an adenovirus. We hypothesized that these engineered cells would effectively increase the migration of native cells to the site of fracture, enhancing bone repair. Before implantation, we showed that SDF-1 secreted by transfected cells increased the migration of nontransfected cells. In a rat defect bone model, bone marrow mesenchymal stem cells overexpressing SDF-1 showed significantly (p=0.003) more new bone formation within the gap and less bone mineral loss at the area adjacent to the defect site during the early bone healing stage. In conclusion, SDF-1 was shown to play an important role in accelerating fracture repair and contributing to bone repair in rat models, by recruiting more host stem cells to the defect site and encouraging osteogenic differentiation and production of bone

    Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4

    Get PDF
    OBJECTIVES: Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. METHODS: MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts. RESULTS: MSCs from OVX rats migrate significantly (p < 0.05) less towards SDF-1 (9%, sd 5%) compared with MSCs from adult (15%, sd 3%) and young rats (25%, sd 4%). Cells transfected with CXCR4 migrated significantly more towards SDF-1 compared with non-transfected cells, irrespective of whether these cells were from OVX (26.5%, sd 4%), young (47%, sd 17%) or adult (21%, sd 4%) rats. Transfected MSCs differentiated to osteoblasts express CXCR4 but do not migrate towards SDF-1. CONCLUSIONS: MSC migration is impaired by age and osteoporosis in rats, and this may be associated with a significant reduction in bone formation in osteoporotic patients. The migration of stem cells can be ameliorated by upregulating CXCR4 levels which could possibly enhance fracture healing in osteoporotic patients

    Electroconvulsive Therapy Practice Changes in Older Individuals Due to COVID-19: Expert Consensus Statement

    Get PDF
    © 2020 American Association for Geriatric Psychiatry The ubiquitous coronavirus 2019 (COVID-19) pandemic has required healthcare providers across all disciplines to rapidly adapt to public health guidelines to reduce risk while maintaining quality of care. Electroconvulsive therapy (ECT), which involves an aerosol-generating procedure from manual ventilation with a bag mask valve while under anesthesia, has undergone drastic practice changes in order to minimize disruption of treatment in the midst of COVID-19. In this paper, we provide a consensus statement on the clinical practice changes in ECT specific to older adults based on expert group discussions of ECT practitioners across the country and a systematic review of the literature. There is a universal consensus that ECT is an essential treatment of severe mental illness. In addition, there is a clear consensus on what modifications are imperative to ensure continued delivery of ECT in a manner that is safe for patients and Northwell Health, while maintaining the viability of ECT services. Approaches to modifications in ECT to address infection control, altered ECT procedures, and adjusting ECT operations are almost uniform across the globe. With modified ECT procedures, it is possible to continue to meet the needs of older patients while mitigating risk of transmission to this vulnerable population

    Antibacterial PMMA Composite Cements with Tunable Thermal and Mechanical Properties

    Get PDF
    PMMA-based cements are the most used bone cements in vertebroplasty and total hip arthroplasty. However, they present several drawbacks, including susceptibility to bacterial infection, monomer leakage toxicity, and high polymerization temperature, which can all lead to damage to the surrounding tissues and their failure. In the present study, silver nanowires (AgNWs) have been introduced to bestow antibacterial properties; chitosan (CS) to promote porosity and to reduce the polymerization temperature, without negatively affecting the mechanical performance; and methacryloyl chitosan (CSMCC) to promote cross-linking with methyl methacrylate (MMA) and reduce the quantity of monomer required for polymerization. Novel PMMA cements were formulated containing AgNWs (0 and 1% w/w) and CS or CSMCC at various concentrations (0, 10, 20, and 30% w/w), testing two different ratios of powder and MMA (P/L). Mechanical, thermal, antibacterial, and cytotoxic properties of the resulting composite cements were tested. Cements with concentrations of CS &gt; 10% presented a significantly reduced polymerization temperature. The mechanical performances were affected for concentrations &gt; 20% with a P/L concentration equal to 2:1. Concentrations of AgNWs as low as 1% w/w conferred antimicrobial activity against S. aureus, whereas biofilm formation on the surface of the cements was increased when CS was included in the preparation. The combination of CS and AgNWs allowed a higher concentration of Ag+ to be released over time with enhanced antimicrobial activity. Inclusion of AgNWs did not affect cell viability on the scaffolds. In conclusion, a combination of CS and AgNWs may be beneficial for reducing both polymerization temperature and biofilm formation, without significantly affecting mesenchymal stem cell proliferation on the scaffolds. No advantages have been noticed as a result of the reducing P/L ratio or using CSMCC instead of CS

    Mesenchymal stem cells with increased SDF-1 expression enhanced fracture healing

    Get PDF
    Treatments of critical size bone defects pose a challenge in orthopaedics. Stem cell therapy together with cytokines has the potential to improve bone repair as they cause the migration and homing of stem cells to the defect site. However, the engraftment, participation and recruitment of other cells within the regenerating tissue are important. To enhance stem cell involvement, this study investigated over-expression of stem cells with SDF-1 using an adenovirus. We hypothesised that these engineered cells would effectively increase the migration of native cells to the site of fracture, enhancing bone repair. Prior to implantation, we show that SDF-1 secreted by transfected cells increased migration of non transfected cells. In a rat defect bone model, bone marrow mesenchymal stem cells over-expressing SDF-1 showed significantly (p=0.003) more new bone formation within the gap and less bone mineral loss at the area adjacent to the defect site during the early bone healing stage. In conclusion, SDF-1 was shown to play an important role in accelerating fracture repair and contributing to bone repair in rat models, by recruiting more hosts' stem cells to the defect site and encouraging osteogenic differentiation and production of bone

    Electronic adherence monitoring identifies severe preschool wheezers who are steroid responsive.

    Get PDF
    Little is known about adherence to inhaled corticosteroids (ICS) in preschool children with troublesome wheeze. Children with aeroallergen senitization, or those reporting multiple trigger wheeze (MTW), are more likely to respond to ICS. We hypothesized that adherence to ICS and symptom control are only positively related in atopic children, or those reporting MTW. Patients aged 1 to 5 years with recurrent wheeze prescribed ICS were recruited from a tertiary respiratory clinic. Clinical phenotype and aeroallergen senitization were determined, and adherence assessed using an electronic monitoring device (Smartinhaler). Symptom control (test for respiratory and asthma control in kids [TRACK]), quality of life (PACQLQ), airway inflammation (offline exhaled nitric oxide) were assessed at baseline and follow-up. Forty-eight children (mean age 3.7 years; SD, 1.2) were monitored for a median of 112 (interquartile range [IQR], 91-126) days. At baseline n = 29 reported episodic viral wheeze and n = 19 reported MTW. Twenty-four out of 48 (50%) wheezers had suboptimal ICS adherence (<80%). Median adherence was 64% (IQR, 38-84). There was a significant increase in TRACK and PACQLQ in the group as a whole, unrelated to adherence. In subgroup analysis only atopic wheezers with moderate or good adherence ≥ 60% had a significant increase in TRACK. There was no relationship between clinical phenotype, and adherence or TRACK. In this pilot study, overall adherence to ICS was suboptimal and was positively related to symptom control in atopic wheezers only. Assessments of adherence are important in preschool troublesome wheezers before therapy escalation to help identify those with an ICS responsive phenotype

    Deferiprone: Pan-selective Histone Lysine Demethylase Inhibition Activity and Structure Activity Relationship Study

    Get PDF
    Deferiprone (DFP) is a hydroxypyridinone-derived iron chelator currently in clinical use for iron chelation therapy. DFP has also been known to elicit antiproliferative activities, yet the mechanism of this effect has remained elusive. We herein report that DFP chelates the Fe 2+ ion at the active sites of selected iron-dependent histone lysine demethylases (KDMs), resulting in pan inhibition of a subfamily of KDMs. Specifically, DFP inhibits the demethylase activities of six KDMs - 2A, 2B, 5C, 6A, 7A and 7B - with low micromolar IC 50 s while considerably less active or inactive against eleven KDMs - 1A, 3A, 3B, 4A-E, 5A, 5B and 6B. The KDM that is most sensitive to DFP, KDM6A, has an IC 50 that is between 7- and 70-fold lower than the iron binding equivalence concentrations at which DFP inhibits ribonucleotide reductase (RNR) activities and/or reduces the labile intracellular zinc ion pool. In breast cancer cell lines, DFP potently inhibits the demethylation of H3K4me3 and H3K27me3, two chromatin posttranslational marks that are subject to removal by several KDM subfamilies which are inhibited by DFP in cell-free assay. These data strongly suggest that DFP derives its anti-proliferative activity largely from the inhibition of a sub-set of KDMs. The docked poses adopted by DFP at the KDM active sites enabled identification of new DFP-based KDM inhibitors which are more cytotoxic to cancer cell lines. We also found that a cohort of these agents inhibited HP1-mediated gene silencing and one lead compound potently inhibited breast tumor growth in murine xenograft models. Overall, this study identified a new chemical scaffold capable of inhibiting KDM enzymes, globally changing histone modification profiles, and with specific anti-tumor activities

    A measure of bending in nucleic acids structures applied to A-tract DNA

    Get PDF
    A method is proposed to measure global bending in DNA and RNA structures. It relies on a properly defined averaging of base-fixed coordinate frames, computes mean frames of suitably chosen groups of bases and uses these mean frames to evaluate bending. The method is applied to DNA A-tracts, known to induce considerable bend to the double helix. We performed atomistic molecular dynamics simulations of sequences containing the A4T4 and T4A4 tracts, in a single copy and in two copies phased with the helical repeat. Various temperature and salt conditions were investigated. Our simulations indicate bending by roughly 10° per A4T4 tract into the minor groove, and an essentially straight structure containing T4A4, in agreement with electrophoretic mobility data. In contrast, we show that the published NMR structures of analogous sequences containing A4T4 and T4A4 tracts are significantly bent into the minor groove for both sequences, although bending is less pronounced for the T4A4 containing sequence. The bending magnitudes obtained by frame averaging are confirmed by the analysis of superhelices composed of repeated tract monomers
    corecore