54 research outputs found
The joint effects of apolipoprotein B, apolipoprotein A1, LDL cholesterol, and HDL cholesterol on risk: 3510 cases of acute myocardial infarction and 9805 controls†
AIMS: Plasma levels of apolipoprotein B (apoB), the main surface protein on LDL particles, and LDL-C, the amount of cholesterol in those particles, are closely correlated and, considered separately, are positive risk factors. Plasma levels of apolipoprotein A(1), the main surface protein on HDL particles, and HDL-C, the amount of cholesterol in those particles, are also closely correlated with each other and, considered separately, are negative risk factors. The interdependence of these four risk factors is unclear. METHODS AND RESULTS: Case-control study among 3510 acute myocardial infarction patients (without prior vascular disease, diabetes, or statin use) in UK hospitals and 9805 controls. Relative risks (age, sex, smoking, and obesity-adjusted) were more strongly related to apoB than to LDL-C and, given apoB, more strongly negatively related to apoA(1) than to HDL-C. The ratio apoB/apoA(1) was uncorrelated with time since symptom onset in cases, was reproducible in samples collected a few years apart in controls (correlation 0.81), and encapsulated almost all the predictive power of these four measurements. Its effect was continuous, substantial throughout the UK normal range [relative risk, top vs. bottom decile of this ratio, 7.3 (95% CI 5.8-9.2)] and varied little with age. The ratio apoB/apoA(1) was substantially more informative about risk (chi(1)(2) = 550) than were commonly used measures such as LDL-C/HDL-C, total/HDL cholesterol, non-HDL cholesterol, and total cholesterol (chi(1)(2) = 407, 334, 204, and 105, respectively). Given apoB and apoA(1), the relationship with risk of LDL-C was reversed, and this reversal was strengthened by appropriate allowance for random measurement errors in two correlated variables. Given usual apoB, lower LDL-C (consistent with smaller LDL particles) was associated with higher risk (P < 0.0001). During the first 8 h after symptom onset HDL-C increased by about 10%, precluding reliable assessment of the joint relationship of apoA(1) and pre-onset HDL-C with risk in such retrospective case-control studies. CONCLUSION: Apolipoprotein ratios are more informative about risk than lipid fractions are. This suggests that, among lipoprotein particles of a particular type (LDL or HDL), some smaller and larger subtypes differ in their effects on risk. Direct measurements of even more specific subtypes of lipoprotein particles may be even more informative about risk
Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis
Journal Article; Research Support, Non-U.S. Gov't;BACKGROUND
Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia.
METHODS
Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed.
RESULTS
Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS).
CONCLUSION
Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during childhood.Part of the studies were financed by grants
from the Swedish Research Council and from the King Gustaf V and Queen Victoria Research Fund and by grants from Grupos de Investigacion y Desarrollo Tecnologico de la Junta de Andalucia (Grupo consolidado CTS-
159).Ye
GLS-1, a Novel P Granule Component, Modulates a Network of Conserved RNA Regulators to Influence Germ Cell Fate Decisions
Post-transcriptional regulatory mechanisms are widely used to influence cell fate decisions in germ cells, early embryos, and neurons. Many conserved cytoplasmic RNA regulatory proteins associate with each other and assemble on target mRNAs, forming ribonucleoprotein (RNP) complexes, to control the mRNAs translational output. How these RNA regulatory networks are orchestrated during development to regulate cell fate decisions remains elusive. We addressed this problem by focusing on Caenorhabditis elegans germline development, an exemplar of post-transcriptional control mechanisms. Here, we report the discovery of GLS-1, a new factor required for many aspects of germline development, including the oocyte cell fate in hermaphrodites and germline survival. We find that GLS-1 is a cytoplasmic protein that localizes in germ cells dynamically to germplasm (P) granules. Furthermore, its functions depend on its ability to form a protein complex with the RNA-binding Bicaudal-C ortholog GLD-3, a translational activator and P granule component important for similar germ cell fate decisions. Based on genetic epistasis experiments and in vitro competition experiments, we suggest that GLS-1 releases FBF/Pumilio from GLD-3 repression. This facilitates the sperm-to-oocyte switch, as liberated FBF represses the translation of mRNAs encoding spermatogenesis-promoting factors. Our proposed molecular mechanism is based on the GLS-1 protein acting as a molecular mimic of FBF/Pumilio. Furthermore, we suggest that a maternal GLS-1/GLD-3 complex in early embryos promotes the expression of mRNAs encoding germline survival factors. Our work identifies GLS-1 as a fundamental regulator of germline development. GLS-1 directs germ cell fate decisions by modulating the availability and activity of a single translational network component, GLD-3. Hence, the elucidation of the mechanisms underlying GLS-1 functions provides a new example of how conserved machinery can be developmentally manipulated to influence cell fate decisions and tissue development
Wine and music (II): can you taste the music? Modulating the experience of wine through music and sound
A growing body of scientific evidence now shows that what people taste when evaluating a wine, and how much they enjoy the experience, can be influenced by the music that happens to be playing at the same time. It has long been known that what we hear can influence the hedonic aspects of tasting. However, what the latest research now shows is that by playing the “right” music one can also impact specific sensory-discriminative aspects of tasting as well. Music has been shown to influence the perceived acidity, sweetness, fruitiness, astringency, and length of wine. We argue against an account of such results in terms of synaesthesia, or “oenesthesia,” as some have chosen to call it. Instead, we suggest that attention, directed via the crossmodal correspondences that exist between sound and taste (in the popular meaning of the term, i.e., flavor), can modify (perhaps enhance, or certainly highlight when attended, or suppress when unattended) certain elements in the complex tasting experience that is drinking wine. We also highlight the likely role played by any change in the mood or emotional state of the person listening to the music on taste/aroma perception as well. Finally, we highlight how the crossmodal masking of sweetness perception may come into effect if the music happens to be too loud (a form of crossmodal sensory masking). Taken together, the evidence reviewed here supports the claim that, strange though it may seem, what we hear (specifically in terms of music) really can change our perception of the taste of wine, not to mention how much we enjoy the experience. Several plausible mechanisms that may underlie such crossmodal effects are outlined
- …