192 research outputs found

    Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

    Get PDF
    Scanning tunneling microscopes (STM) are used extensively for studying and manipulating matter at the atomic scale. In spite of the critical role of the STM tip, the control of the atomic-scale shape of STM tips remains a poorly solved problem. Here, we present a method for preparing tips {\it in-situ} and for ensuring the crystalline structure and reproducibly preparing tip structure up to the second atomic layer. We demonstrate a controlled evolution of such tips starting from undefined tip shapes.Comment: 12 pages preprint-style; 5 figure

    Metallic properties of magnesium point contacts

    Get PDF
    We present an experimental and theoretical study of the conductance and stability of Mg atomic-sized contacts. Using Mechanically Controllable Break Junctions (MCBJ), we have observed that the room temperature conductance histograms exhibit a series of peaks, which suggests the existence of a shell effect. Its periodicity, however, cannot be simply explained in terms of either an atomic or electronic shell effect. We have also found that at room temperature, contacts of the diameter of a single atom are absent. A possible interpretation could be the occurrence of a metal-to-insulator transition as the contact radius is reduced, in analogy with what it is known in the context of Mg clusters. However, our first principle calculations show that while an infinite linear chain can be insulating, Mg wires with larger atomic coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at liquid helium temperature our measurements show that the conductance histogram is dominated by a pronounced peak at the quantum of conductance. This is in good agreement with our calculations based on a tight-binding model that indicate that the conductance of a Mg one-atom contact is dominated by a single fully open conduction channel.Comment: 14 pages, 5 figure

    Structure and conductance histogram of atomic-sized Au contacts

    Full text link
    Many experiments have shown that the conductance histograms of metallic atomic-sized contacts exhibit a peak structure, which is characteristic of the corresponding material. The origin of these peaks still remains as an open problem. In order to shed some light on this issue, we present a theoretical analysis of the conductance histograms of Au atomic contacts. We have combined classical molecular dynamics simulations of the breaking of nanocontacts with conductance calculations based on a tight-binding model. This combination gives us access to crucial information such as contact geometries, forces, minimum cross-section, total conductance and transmission coefficients of the individual conduction channels. The ensemble of our results suggests that the low temperature Au conductance histograms are a consequence of a subtle interplay between mechanical and electrical properties of these nanocontacts. At variance with other suggestions in the literature, our results indicate that the peaks in the Au conductance histograms are not a simple consequence of conductance quantization or the existence of exceptionally stable radii. We show that the main peak in the histogram close to one quantum of conductance is due to the formation of single-atom contacts and chains of gold atoms. Moreover, we present a detailed comparison with experimental results on Au atomic contacts where the individual channel transmissions have been determined.Comment: 11 pages, 10 figures, version to be published in Phys. Rev. B. The paper has been thoroughly revised and several figures have been replaced by new one

    Examining habituation and sensitization across repetitive laboratory stress inductions using the MAST

    Get PDF
    Reliably eliciting acute stress repeatedly over time is of indispensable value for research into stress vulnerability and for developing interventions aimed at increasing stress resiliency. Here, we evaluated whether the Maastricht Acute Stress Test (MAST), a potent stress protocol that combines physical and psychosocial stress components, can be used to reliably elicit subjective and neuroendocrine stress responses multiple times. Sixty healthy undergraduate participants were exposed to the MAST on three occasions, with intervals of three-weeks and one-month in between sessions. Results showed no significant signs of habituation or sensitization to the MAST in terms of subjective or physiological (salivary alpha-amylase and cortisol) stress reactivity. Fifty-nine percent of the sample displayed a significant physiological stress response (i.e., cortisol) to two MAST exposures and 57% to every MAST exposure. This study demonstrates that the MAST can be used to repeatedly induce significant stress responses

    Evidence for saturation of channel transmission from conductance fluctuations in atomic-size point contacts

    Get PDF
    The conductance of atomic size contacts has a small, random, voltage dependent component analogous to conductance fluctuations observed in diffusive wires (UCF). A new effect is observed in gold contacts, consisting of a marked suppression of these fluctuations when the conductance of the contact is close to integer multiples of the conductance quantum. Using a model based on the Landauer-Buettiker formalism we interpret this effect as evidence that the conductance tends to be built up from fully transmitted (i.e., saturated) channels plus a single, which is partially transmitted.Comment: An error in Eq.(2) was corrected, where a square root was added to the factor (1-cos(gamma)). This results in a revised estimate for the mean free path of 5 nm, which is now fully consistent with the estimates from the series resistance and the thermopowe

    Conductance of a tunnel point-contact of noble metals in the presence of a single defect

    Get PDF
    In paper [1] (Avotina et al. Phys. Rev. B,74, 085411 (2006)) the effect of Fermi surface anisotropy to the conductance of a tunnel point contact, in the vicinity of which a single point-like defect is situated, has been investigated theoretically. The oscillatory dependence of the conductance on the distance between the contact and the defect has been found for a general Fermi surface geometry. In this paper we apply the method developed in [1] to the calculation of the conductance of noble metal contacts. An original algorithm, which enables the computation of the conductance for any parametrically given Fermi surface, is proposed. On this basis a pattern of the conductance oscillations, which can be observed by the method of scanning tunneling microscopy, is obtained for different orientations of the surface for the noble metals.Comment: 8 pages, 5 figure

    Theory of oscillations in the STM conductance resulting from subsurface defects (Review Article)

    Get PDF
    In this review we present recent theoretical results concerning investigations of single subsurface defects by means of a scanning tunneling microscope (STM). These investigations are based on the effect of quantum interference between the electron partial waves that are directly transmitted through the contact and the partial waves scattered by the defect. In particular, we have shown the possibility imaging the defect position below a metal surface by means of STM. Different types of subsurface defects have been discussed: point-like magnetic and non-magnetic defects, magnetic clusters in a nonmagnetic host metal, and non-magnetic defects in a s-wave superconductor. The effect of Fermi surface anisotropy has been analyzed. Also, results of investigations of the effect of a strong magnetic field to the STM conductance of a tunnel point contact in the presence of a single defect has been presented.Comment: 31 pages, 10 figuers Submitted to Low. Temp. Phy

    Common Origin for Surface Reconstruction and the Formation of Chains of Metal Atoms

    Get PDF
    During the fracture of nanocontacts gold spontaneously forms freely suspended chains of atoms, which is not observed for the iso-electronic noble metals Ag and Cu. Au also differs from Ag and Cu in forming reconstructions at its low-index surfaces. Using mechanically controllable break junctions we show that all the 5d metals that show similar reconstructions (Ir, Pt and Au) also form chains of atoms, while both properties are absent in the 4d neighbor elements (Rh, Pd, Ag), indicating a common origin for these two phenomena. A competition between s and d bonding is proposed as an explanation

    Coherent Relation between Structure and Conduction of Infinite Atomic Wires

    Full text link
    We demonstrate a theoretical analysis concerning the geometrical structures and electrical conduction of infinite monatomic gold and aluminum wires in the process of their elongation, based on first-principles molecular-dynamics simulations using the real-space finite-difference method. Our study predicts that the single-row gold wire ruptures up to form a dimer coupling structure when the average interatomic distance increases up to more than 3.0 A, and that the wire is conductive before breaking but changes to an insulator at the rupturing point. In the case of the alumi-num wire, it exhibits a magnetic ordering due to the spin polarization, and even when stretched up to the average interatomic distance of 3.5 A, a dimerization does not oc-cur and the wire keeps a metallic nature.Comment: 10 pages and 6 figures. accepted to Nanotechnolog

    Signature of Fermi surface anisotropy in point contact conductance in the presence of defects

    Get PDF
    In a previous paper (Avotina et al.,Phys. Rev. B Vol.71, 115430 (2005)) we have shown that in principle it is possible to image the defect positions below a metal surface by means of a scanning tunnelling microscope. The principle relies on the interference of electron waves scattered on the defects, which give rise to small but measurable conductance fluctuations. Whereas in that work the band structure was assumed to be free-electron like, here we investigate the effects of Fermi surface anisotropy. We demonstrate that the amplitude and period of the conductance oscillations are determined by the local geometry of the Fermi surface. The signal results from those points for which the electron velocity is directed along the vector connecting the point contact to the defect. For a general Fermi surface geometry the position of the maximum amplitude of the conductance oscillations is not found for the tip directly above the defect. We have determined optimal conditions for determination of defect positions in metals with closed and open Fermi surfaces.Comment: 23 pages, 8 figure
    corecore