72,206 research outputs found

    Nature of Decoupling in the Mixed Phase of Extremely Type-II Layered Superconductors

    Full text link
    The uniformly frustrated layered XY model is analyzed in its Villain form. A decouple pancake vortex liquid phase is identified. It is bounded by both first-order and second-order decoupling lines in the magnetic field versus temperature plane. These transitions, respectively, can account for the flux-lattice melting and for the flux-lattice depinning observed in the mixed phase of clean high-temperature superconductors.Comment: 11 pages of PLAIN TeX, 1 postscript figure, published version, many change

    Degradation of Phase Coherence by Defects in a Two-Dimensional Vortex Lattice

    Full text link
    The thermodynamic nature of two-dimensional vortex matter is studied theoretically through a duality analysis of the XY model over the square lattice with low uniform frustration. A phase-coherent vortex lattice state is found at low temperature if rigid translations are prohibited. It shows a non-zero phase rigidity that is degraded exclusively by the creation of dislocation pairs. The unbinding of such pairs causes the vortex lattice to simultaneously lose phase coherence and to melt at a continuous (Kosterlitz-Thouless) phase transition. General phase auto-correlation functions are also computed, and these results are used to argue for the existence of a continuous melting transition of vortex matter in layered superconductors.Comment: 11 pgs. of PLAIN TeX, to appear in PRL, some improvement

    Design of multiple-ply laminated composite tapered beams

    Get PDF
    A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted for determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are presented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered
    corecore