1,582 research outputs found

    Remarks on the use of projected densities in the density dependent part of Skyrme or Gogny functionals

    Full text link
    I discuss the inadequacy of the "projected density" prescription to be used in density dependent forces/functionals when calculations beyond mean field are pursued. The case of calculations aimed at the symmetry restoration of mean fields obtained with effective realistic forces of the Skyrme or Gogny type is considered in detail. It is shown that at least for the restoration of spatial symmetries like rotations, translations or parity the above prescription yields catastrophic results for the energy that drive the intrinsic wave function to configurations with infinite deformation, preventing thereby its use both in projection after and before variation.Comment: To be published as a contribution to J. Phys G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Shape evolution in Yttrium and Niobium neutron-rich isotopes

    Get PDF
    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in neutron-rich odd-A Yttrium and Niobium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M. The equal filling approximation is used to describe odd-A nuclei preserving both axial and time reversal symmetries. Shape-transition signatures are identified in the N=60 isotopes in both charge radii and spin-parities of the ground states. These signatures are a common characteristic for nuclei in the whole mass region. The nuclear deformation and shape coexistence inherent to this mass region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying one-quasiproton states. Finally, a global picture of the neutron-rich A=100 mass region from Krypton up to Molybdenum isotopes is illustrated with the systematics of the nuclear charge radii isotopic shifts.Comment: 21 pages, 14 figures. To be published in Phys. Rev.

    Application of the gradient method to Hartree-Fock-Bogoliubov theory

    Full text link
    A computer code is presented for solving the equations of Hartree-Fock-Bogoliubov (HFB) theory by the gradient method, motivated by the need for efficient and robust codes to calculate the configurations required by extensions of HFB such as the generator coordinate method. The code is organized with a separation between the parts that are specific to the details of the Hamiltonian and the parts that are generic to the gradient method. This permits total flexibility in choosing the symmetries to be imposed on the HFB solutions. The code solves for both even and odd particle number ground states, the choice determined by the input data stream. Application is made to the nuclei in the sdsd-shell using the USDB shell-model Hamiltonian.Comment: 20 pages, 5 figures, 3 table

    Systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes with the Gogny energy density functional

    Get PDF
    The systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes is studied within the Hartree-Fock-Bogoliubov plus Equal Filling Approximation method preserving both axial and time reversal symmetries. Calculations based on the Gogny energy density functional with both the standard D1S parametrization and the new D1M incarnation of this functional are included in our analysis. The nuclear deformation and shape coexistence inherent to this mass region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying one-quasineutron states.Comment: 11 page

    Intermittency at critical transitions and aging dynamics at edge of chaos

    Full text link
    We recall that, at both the intermittency transitions and at the Feigenbaum attractor in unimodal maps of non-linearity of order ζ>1\zeta >1, the dynamics rigorously obeys the Tsallis statistics. We account for the qq-indices and the generalized Lyapunov coefficients λq\lambda_{q} that characterize the universality classes of the pitchfork and tangent bifurcations. We identify the Mori singularities in the Lyapunov spectrum at the edge of chaos with the appearance of a special value for the entropic index qq. The physical area of the Tsallis statistics is further probed by considering the dynamics near criticality and glass formation in thermal systems. In both cases a close connection is made with states in unimodal maps with vanishing Lyapunov coefficients.Comment: Proceedings of: STATPHYS 2004 - 22nd IUPAP International Conference on Statistical Physics, National Science Seminar Complex, Indian Institute of Science, Bangalore, 4-9 July 2004. Pramana, in pres

    Signatures of shape transition in odd-A neutron-rich Rubidium isotopes

    Get PDF
    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M, and implemented with the equal filling approximation. We find clear signatures of a sharp shape transition at N=60 in both charge radii and spin-parity of the ground states, which are robust, consistent to each other, and in agreement with experiment. We point out that the combined analysis of these two observables could be used to predict unambiguously new regions where shape transitions might develop.Comment: 6 pages, 7 figures. To appear in Phys. Rev. C (Rapid Communications

    Microscopic description of quadrupole-octupole coupling in Sm and Gd isotopes with the Gogny Energy Density Functional

    Get PDF
    The interplay between the collective dynamics of the quadrupole and octupole deformation degree of freedom is discussed in a series of Sm and Gd isotopes both at the mean field level and beyond, including parity symmetry restoration and configuration mixing. Physical properties like negative parity excitation energies, E1 and E3 transition probabilities are discussed and compared to experimental data. Other relevant intrinsic quantities like dipole moments, ground state quadrupole moments or correlation energies associated to symmetry restoration and configuration mixing are discussed. For the considered isotopes, the quadrupole-octupole coupling is found to be weak and most of the properties of negative parity states can be described in terms of the octupole degree of freedom alone.Comment: 31 pages, 11 figure

    Octupole deformation properties of the Barcelona-Catania-Paris energy density functionals

    Full text link
    We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP) energy density functionals for two sets of isotopes, those of radium and barium, where it is believed that octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean field framework (Hartree- Fock- Bogoliubov approximation) by using the axially symmetric octupole moment as a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry spontaneously broken by the mean field and also incorporate octupole fluctuations around the ground state solution. For each isotope the energy of the lowest lying 1−1^{-}state and the B(E1)B(E1) and B(E3)B(E3) transition probabilities have been computed and compared to both the experimental data and the results obtained in the same framework with the Gogny D1S interaction, which are used here as a well established benchmark. Finally, the octupolarity of the configurations involved in the way down to fission of 240^{240}Pu, which is strongly connected to the asymmetric fragment mass distribution, is studied. We confirm with this thorough study the suitability of the BCP functionals to describe octupole related phenomena.Comment: 13 pages, 13 figure

    Accurate nuclear masses from a three parameter Kohn-Sham DFT approach (BCPM)

    Full text link
    Given the promising features of the recently proposed Barcelona-Catania-Paris (BCP) functional \cite{Baldo.08}, it is the purpose of this paper to still improve on it. It is, for instance, shown that the number of open parameters can be reduced from 4-5 to 2-3, i.e. by practically a factor of two. One parameter is tightly fixed by a fine-tuning of the bulk, a second by the surface energy. The third is the strength of the spin-orbit potential on which the final result does not depend within the scatter of the values used in Skyrme and Gogny like functionals. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Waspra 2003 compilation. This rms value compares favorably with the one obtained using other successful mean field theories. Charge radii are also well reproduced when compared with experiment. The energies of some excited states, mostly the isoscalar giant monopole resonances, are studied within this model as well.Comment: 23 pages, 12 figure
    • …
    corecore