32 research outputs found

    Whole Blood Profiling of T-cell-Derived microRNA Allows the Development of Prognostic models in Inflammatory Bowel Disease

    Get PDF
    Background: MicroRNAs [miRNAs] are cell-specific small non-coding RNAs that can regulate gene expression and have been implicated in inflammatory bowel disease [IBD] pathogenesis. Here we define the cell-specific miRNA profiles and investigate its biomarker potential in IBD. Methods: In a two-stage prospective multi-centre case control study, next generation sequencing was performed on a discovery cohort of immunomagnetically separated leukocytes from 32 patients (nine Crohn''s disease [CD], 14 ulcerative colitis [UC], eight healthy controls) and differentially expressed signals were validated in whole blood in 294 patients [97 UC, 98 CD, 98 non-IBD, 1 IBDU] using quantitative PCR. Correlations were analysed with phenotype, including need for early treatment escalation as a marker of progressive disease using Cox proportional hazards. Results: In stage 1, each leukocyte subset [CD4+ and CD8+ T-cells and CD14+ monocytes] was analysed in IBD and controls. Three specific miRNAs differentiated IBD from controls in CD4+ T-cells, including miR-1307-3p [p = 0.01], miR-3615 [p = 0.02] and miR-4792 [p = 0.01]. In the extension cohort, in stage 2, miR-1307-3p was able to predict disease progression in IBD (hazard ratio [HR] 1.98, interquartile range [IQR]: 1.20-3.27; logrank p = 1.80 × 10-3), in particular CD [HR 2.81; IQR: 1.11-3.53, p = 6.50 × 10-4]. Using blood-based multimarker miRNA models, the estimated chance of escalation in CD was 83% if two or more criteria were met and 90% for UC if three or more criteria are met. Interpretation: We have identified and validated unique CD4+ T-cell miRNAs that are differentially regulated in IBD. These miRNAs may be able to predict treatment escalation and have the potential for clinical translation; further prospective evaluation is now indicated

    Systemic Inflammation in Preclinical Ulcerative Colitis

    Get PDF
    Background & Aims: Preclinical ulcerative colitis is poorly defined. We aimed to characterize the preclinical systemic inflammation in ulcerative colitis, using a comprehensive set of proteins. Methods: We obtained plasma samples biobanked from individuals who developed ulcerative colitis later in life (n = 72) and matched healthy controls (n = 140) within a population-based screening cohort. We measured 92 proteins related to inflammation using a proximity extension assay. The biologic relevance of these findings was validated in an inception cohort of patients with ulcerative colitis (n = 101) and healthy controls (n = 50). To examine the influence of genetic and environmental factors on these markers, a cohort of healthy twin siblings of patients with ulcerative colitis (n = 41) and matched healthy controls (n = 37) were explored. Results: Six proteins (MMP10, CXCL9, CCL11, SLAMF1, CXCL11 and MCP-1) were up-regulated (P < .05) in preclinical ulcerative colitis compared with controls based on both univariate and multivariable models. Ingenuity Pathway Analyses identified several potential key regulators, including interleukin-1ß, tumor necrosis factor, interferon-gamma, oncostatin M, nuclear factor-¿B, interleukin-6, and interleukin-4. For validation, we built a multivariable model to predict disease in the inception cohort. The model discriminated treatment-naïve patients with ulcerative colitis from controls with leave-one-out cross-validation (area under the curve = 0.92). Consistently, MMP10, CXCL9, CXCL11, and MCP-1, but not CCL11 and SLAMF1, were significantly up-regulated among the healthy twin siblings, even though their relative abundances seemed higher in incident ulcerative colitis. Conclusions: A set of inflammatory proteins are up-regulated several years before a diagnosis of ulcerative colitis. These proteins were highly predictive of an ulcerative colitis diagnosis, and some seemed to be up-regulated already at exposure to genetic and environmental risk factors. © 2021 The Author

    The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients

    Get PDF
    Active microbes likely have larger impact on gut health status compared to inactive or dormant microbes. We investigate the composition of active and total mucosal microbiota of treatment-naïve ulcerative colitis (UC) patients to determine the microbial picture at the start-up phase of disease, using both a 16S rRNA transcript and gene amplicon sequencing. DNA and RNA were isolated from the same mucosal colonic biopsies. Our aim was to identify active microbial members of the microbiota in early stages of disease and reveal which members are present, but do not act as major players. We demonstrated differences in active and total microbiota of UC patients when comparing inflamed to non-inflamed tissue. Several taxa, among them the Proteobacteria phyla and families therein, revealed lower transcriptional activity despite a high presence. The Bifidobacteriaceae family of the Actinobacteria phylum showed lower abundance in the active microbiota, although no difference in presence was detected. The most abundant microbiota members of the inflamed tissue in UC patients were not the most active. Knowledge of active members of microbiota in UC patients could enhance our understanding of disease etiology. The active microbial community composition did not deviate from the total when comparing UC patients to non-IBD controls

    Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease

    Get PDF
    Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression

    Eulerian Video Magnification in Surveillance Systems

    No full text
    In this article we look at the research behind Eulerian Video Magnification, its beginnings and innovations that lead to its potential use in real time heart rate measurement. The spatial amplitude changes are exaggerated using EVM in conjuncture with face detection using the Viola-Jones algorithm to allow measurement of moving subjects. Fourier transform on the temporal signal of pooled skin pixels then yields heart rate. The algorithm is tested against movement and at different distances

    Gut bacterial profile in patients newly diagnosed with treatment-na&amp;iuml;ve Crohn&amp;#39;s disease

    No full text
    Petr Ricanek,1,2 Sheba M Lothe,1 Stephan A Frye,1 Andreas Rydning,2 Morten H Vatn,3,4 Tone T&amp;oslash;njum1,51Centre for Molecular Biology and Neuroscience and Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, 2Department of Gastroenterology, Akershus University Hospital, L&amp;oslash;renskog and Faculty Division Akershus University Hospital, University of Oslo, L&amp;oslash;renskog, 3EpiGen Institute, Faculty Division Akershus University Hospital, University of Oslo, L&amp;oslash;renskog, 4Department of Medicine, Oslo University Hospital, Rikshospitalet, Oslo, 5Centre for Molecular Biology and Neuroscience and Department of Microbiology, University of Oslo, Oslo, NorwayObjectives: The aim of this study was to define the composition of the gut bacterial flora in Norwegian patients with early stage Crohn&amp;#39;s disease (CD). Methods: By using a nonselective metagenomics approach, the general bacterial composition in mucosal biopsies from the ileum and the colon of five subjects, four patients with different phenotypes of CD, and one noninflammatory bowel disease control, was characterized. After partial 16S ribosomal RNA (rRNA) gene sequencing, BLAST homology searches for species identification and phylogenetic analysis were performed.Results: An overall biodiversity of 106 different bacterial operational taxonomic units (OTUs) was detected in the cloned libraries. Nearly all OTUs belonged to the phylae Bacteroidetes (42% in CD, 71% in the control) or Firmicutes (42% in CD, 28% in the control), except for some OTUs that belonged to the phylum Proteobacteria (15% in CD, 0% in the control) and a few OTUs that could not be assigned to a phylum (2% in CD, 1% in the control).Conclusion: Based on the high incidence of inflammatory bowel disease (IBD) in Norway, this pilot study represents a relevant determination of the gut microbiota in Norwegian patients compared to previous findings in other countries. The bacterial profile of Norwegian CD patients was found to be similar to that of CD patients in other countries. The findings do not support a particular bacterial composition as a predominant causative factor for the high incidence of IBD that exists in some countries.Keywords: Crohn&amp;#39;s disease, gut microbiota composition, inflammatory bowel disease, IBD, metagenomics, 16S rRNA gene sequence

    Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease

    No full text
    Petr Ricanek,1,2 Lisa K Lunde,3 Stephan A Frye,1 Mari St&oslash;en,1 St&aring;le Nyg&aring;rd,4 Jens P Morth,5,6 Andreas Rydning,2 Morten H Vatn,7,8 Mahmood Amiry-Moghaddam,3 Tone T&oslash;njum,1,9 1Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, 2Department of Gastroenterology, Akershus University Hospital, L&oslash;renskog and Campus Ahus, Institute of Clinical Medicine, University of Oslo, L&oslash;renskog, 3Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 4Bioinformatics Core Facility, Institute for Medical Informatics, Oslo University Hospital and University of Oslo, 5Centre for Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 6Institute for Experimental Research, Oslo University Hospital (Ullevaal), Oslo, 7EpiGen Institute, Campus Ahus, Institute of Clinical Medicine, University of Oslo, L&oslash;renskog, 8Section of Gastroenterology, Oslo University Hospital, Rikshospitalet, Oslo, 9Department of Microbiology, University of Oslo, Oslo, Norway Objectives: The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods: Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results: AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn&#39;s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion: AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn&#39;s disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology. Keywords: inflammatory bowel disease, Crohn&#39;s disease, ulcerative colitis, aquaporins, aquaglyceroporin
    corecore