112 research outputs found

    Discovery and Characterisation of Dual Inhibitors of Tryptophan 2,3-Dioxygenase (TDO2) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Using Virtual Screening

    Get PDF
    Cancers express tryptophan catabolising enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) to produce immunosuppressive tryptophan metabolites that undermine patients' immune systems, leading to poor disease outcomes. Both enzymes are validated targets for cancer immunotherapy but there is a paucity of potent TDO2 and dual IDO1/TDO2 inhibitors. To identify novel dual IDO1/TDO2 scaffolds, 3D shape similarity and pharmacophore in silico screening was conducted using TDO2 as a model for both systems. The obtained hits were tested in cancer cell lines expressing mainly IDO1 (SKOV3-ovarian), predominantly TDO2 (A172-brain), and both IDO1 and TDO2 (BT549-breast). Three virtual screening hits were confirmed as inhibitors (TD12, TD18 and TD34). Dose response experiments showed that TD34 is the most potent inhibitor capable of blocking both IDO1 and TDO2 activity, with the IC50 value for BT549 at 3.42 µM. This work identified new scaffolds able to inhibit both IDO1 and TDO2, thus enriching the collection of dual IDO1/TDO2 inhibitors and providing chemical matter for potential development into future anticancer drugs

    Comparative health technology assessment of robotic-assisted, direct manual laparoscopic and open surgery:a prospective study

    Get PDF
    Background: Despite many publications reporting on the increased hospital cost of robotic-assisted surgery (RAS) compared to direct manual laparoscopic surgery (DMLS) and open surgery (OS), the reported health economic studies lack details on clinical outcome, precluding valid health technology assessment (HTA). Methods: The present prospective study reports total cost analysis on 699 patients undergoing general surgical, gynecological and thoracic operations between 2011 and 2014 in the Italian Public Health Service, during which period eight major teaching hospitals treated the patients. The study compared total healthcare costs of RAS, DMLS and OS based on prospectively collected data on patient outcome in addition to healthcare costs incurred by the three approaches. Results: The cost of RAS operations was significantly higher than that of OS and DMLS for both gynecological and thoracic operations (p < 0.001). The study showed no significant difference in total costs between OS and DMLS. Total costs of general surgery RAS were significantly higher than those of OS (p < 0.001), but not against DMLS general surgery. Indirect costs were significantly lower in RAS compared to both DMLS general surgery and OS gynecological surgery due to the shorter length of hospital stay of RAS approach (p < 0.001). Additionally, in all specialties compared to OS, patients treated by RAS experienced a quicker recovery and significantly less pain during the hospitalization and after discharge. Conclusions: The present HTA while confirming higher total healthcare costs for RAS operations identified significant clinical benefits which may justify the increased expenditure incurred by this approach

    Comparison of medication adherence to different oral anticoagulants : population-based cohort study

    Get PDF
    Publisher Copyright: © Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.OBJECTIVE: Previous observational studies have yielded conflicting results on whether medication adherence differs between patients receiving warfarin and direct oral anticoagulants (DOACs). Importantly, no study has adequately accounted for warfarin dosing being continuously modified based on INR values while dosing of DOACs is fixed. We aimed to compare non-adherence between new users of apixaban, dabigatran, rivaroxaban and warfarin in a population-based cohort. METHODS: New users of apixaban, dabigatran, rivaroxaban and warfarin from 2014 to 2019 living in the Icelandic capital area were included. Non-adherence was defined as proportion of days covered below 80%. Inverse probability weighting was used to yield balanced study groups and non-adherence was compared using logistic regression. Factors associated with non-adherence were estimated using multivariable logistic regression. RESULTS: Overall, 1266 patients received apixaban, 247 dabigatran, 1566 rivaroxaban and 768 warfarin. The proportion of patients with non-adherence ranged from 10.5% to 16.7%. Dabigatran was associated with significantly higher odds of non-adherence compared with apixaban (OR 1.57, 95% CI 1.21 to 2.04, p<0.001), rivaroxaban (OR 1.45, 95% CI 1.12 to 1.89, p=0.005) and warfarin (OR 1.63, 95% CI 1.23 to 2.15, p<0.001). The odds of non-adherence were similar for apixaban, rivaroxaban and warfarin. Apart from the type of oral anticoagulants (OACs) used, female sex, hypertension, history of cerebrovascular accident and concomitant statin use were all independently associated with lower odds of non-adherence. CONCLUSION: Dabigatran was associated with higher odds of non-adherence compared with other OACs. Non-adherence was similar between apixaban, rivaroxaban and warfarin users. Female sex and higher comorbidity were associated with better medication adherence.Peer reviewe

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs.

    Get PDF
    Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors

    A Laboratory of Extremophiles: Iceland Coordination Action for Research Activities on Life in Extreme Environments (CAREX) Field Campaign

    Get PDF
    Existence of life in extreme environments has been known for a long time, and their habitants have been investigated by different scientific disciplines for decades. However, reports of multidisciplinary research are uncommon. In this paper, we report an interdisciplinary three-day field campaign conducted in the framework of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX) FP7EU program, with participation of experts in the fields of life and earth sciences. In situ experiments and sampling were performed in a 20 m long hot springs system of different temperature (57 \ub0C to 100 \ub0C) and pH (2 to 4). Abiotic factors were measured to study their influence on the diversity. The CO2 and H2S concentration varied at different sampling locations in the system, but the SO2 remained the same. Four biofilms, mainly composed by four different algae and phototrophic protists, showed differences in photosynthetic activity. Varying temperature of the sampling location affects chlorophyll fluorescence, not only in the microbial mats, but plants (Juncus), indicating selective adaptation to the environmental conditions. Quantitative polymerase chain reaction (PCR), DNA microarray and denaturing gradient gel electrophoresis (DGGE)-based analysis in laboratory showed the presence of a diverse microbial population. Even a short duration (30 h) deployment of a micro colonizer in this hot spring system led to colonization of microorganisms based on ribosomal intergenic spacer (RISA) analysis. Polyphasic analysis of this hot spring system was possible due to the involvement of multidisciplinary approaches

    Solvent Effects on Ionization Potentials of Guanine Runs and Chemically Modified Guanine in Duplex DNA: Effect of Electrostatic Interaction and Its Reduction due to Solvent

    Get PDF
    We examined the ionization potential (IP) corresponding to the free energy of a hole on duplex DNA by semiempirical molecular orbital theory with a continuum solvent model. As for the contiguous guanines (a guanine run), we found that the IP in the gas phase significantly decreases with the increasing number of nucleotide pairs of the guanine run, whereas the IP in water (OP, oxidation potential) only slightly does. The latter result is consistent with the experimental result for DNA oligomers in water. This decrease in the IP is mainly due to the attractive electrostatic interaction between the hole and a nucleotide pair in the duplex DNA. This interaction is reduced in water, which results in the small decrease in the IP in water. This mechanism explains the discrepancy between the experimental result and the previous computational results obtained by neglecting the solvent. As for the chemically modified guanine, the previous work showed that the removal of some solvent (water) molecules due to the attachment of a neutral functional group to a guanine in a duplex DNA stabilizes the hole on the guanine. One might naively have expected the opposite case, since a polar solvent usually stabilizes ions. This mechanism also explains this unexpected stabilization of a hole as follows. When some water molecules are removed, the attractive electrostatic interaction stabilizing the hole increases, and thus, the hole is stabilized. In order to design the hole energetics by a chemical modification of DNA, this mechanism has to be taken into account and can be used. 1
    corecore