218 research outputs found

    Land Policy for Flood Risk Management-Toward a New Working Paradigm

    Get PDF
    Flood risk management (FRM) aims to integrate necessary technical measures with environmental and societal approaches. Focusing on the process and governance of how to plan, implement, and maintain solutions therefore becomes essential. Among the different stakeholders, landowners are a key group to be considered. This contribution elaborates on the interconnections between land policy, FRM and private land ownership. It is based on the European COST Action network LAND4FLOOD, which brings together academics and stakeholders from various disciplines and more than 35 countries. We argue for a less project oriented and more process oriented approach, a focus on land management and more emphasis on small-scale measures. This represents a break with some of the recent working paradigms of FRM

    development of qsar models for predicting anti hiv 1 activity using the monte carlo method

    Get PDF
    AbstractAbstract The CORAL software (http://www.insilico.eu/coral/) has been examined as a tool for modeling anti-HIV-1 activity by quantitative structure — activity relationships (QSAR) for three different sets: (i) TIBO derivatives (n=82) (ii) anti-HIV-1 activity of 2-amino-6-arylsulfonylbenzonitriles and their congeners (n=64), and (iii) the measured binding affinity for fullerene-based HIV-1 PR inhibitors (n=48). A new global invariant ATOMPAIR of the molecular structure which can be calculated with the simplified molecular input line entry system (SMILES) was studied. The ATOMPAIR is an indicator of the joint presence of pairs of chemical elements (F, Cl, Br, N, O, S, and P) and three types of bonds (double covalent bond, triple covalent bond, and stereo chemical bond). Six random splits into sub-training, calibration, and test set were examined for each set. For the three aforementioned sets, the use of ATOMPAIR in the modeling process improves the predictive potential of the models for six random splits. Graphical abstrac

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    Nucleologenesis in the Caenorhabditis elegans Embryo

    Get PDF
    In the Caenorhabditis elegans nematode, the oocyte nucleolus disappears prior to fertilization. We have now investigated the re-formation of the nucleolus in the early embryo of this model organism by immunostaining for fibrillarin and DAO-5, a putative NOLC1/Nopp140 homolog involved in ribosome assembly. We find that labeled nucleoli first appear in somatic cells at around the 8-cell stage, at a time when transcription of the embryonic genome begins. Quantitative analysis of radial positioning showed the nucleolus to be localized at the nuclear periphery in a majority of early embryonic nuclei. At the ultrastructural level, the embryonic nucleolus appears to be composed of a relatively homogenous core surrounded by a crescent-shaped granular structure. Prior to embryonic genome activation, fibrillarin and DAO-5 staining is seen in numerous small nucleoplasmic foci. This staining pattern persists in the germline up to the ∟100-cell stage, until the P4 germ cell divides to give rise to the Z2/Z3 primordial germ cells and embryonic transcription is activated in this lineage. In the ncl-1 mutant, which is characterized by increased transcription of rDNA, DAO-5-labeled nucleoli are already present at the 2-cell stage. Our results suggest a link between the activation of transcription and the initial formation of nucleoli in the C. elegans embryo

    Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression

    Get PDF
    Background. End-stage renal disease (ESRD) results in increased susceptibility to infections, impaired response to vaccination and diffuse B-cell lymphopenia. However, the precise nature and mechanism of ESRD-induced B-cell lymphopenia remains unclear. Therefore, we studied the distribution of major B-cell subsets, B-cell growth, differentiation and survival factors, IL-7 and BAFF, and their receptors in 21 haemodialysis patients and 21 controls

    Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia

    Get PDF
    Anoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. 13C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD+ regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate. Complex II operated amphidirectionally during the anoxic event, providing quinones to Complex I and reducing fumarate to succinate. Our results highlight the importance of quinone provision to Complex I oxidizing NADH maintaining glutamate catabolism and mtSLP in the absence of OXPHOS.</p

    European American Stratification in Ovarian Cancer Case Control Data: The Utility of Genome-Wide Data for Inferring Ancestry

    Get PDF
    We investigated the ability of several principal components analysis (PCA)-based strategies to detect and control for population stratification using data from a multi-center study of epithelial ovarian cancer among women of European-American ethnicity. These include a correction based on an ancestry informative markers (AIMs) panel designed to capture European ancestral variation and corrections utilizing un-thinned genome-wide SNP data; case-control samples were drawn from four geographically distinct North-American sites. The AIMs-only and genome-wide first principal components (PC1) both corresponded to the previously described North or Northwest-Southeast axis of European variation. We found that the genome-wide PCA captured this primary dimension of variation more precisely and identified additional axes of genome-wide variation of relevance to epithelial ovarian cancer. Associations evident between the genome-wide PCs and study site corroborate North American immigration history and suggest that undiscovered dimensions of variation lie within Northern Europe. The structure captured by the genome-wide PCA was also found within control individuals and did not reflect the case-control variation present in the data. The genome-wide PCA highlighted three regions of local LD, corresponding to the lactase (LCT) gene on chromosome 2, the human leukocyte antigen system (HLA) on chromosome 6 and to a common inversion polymorphism on chromosome 8. These features did not compromise the efficacy of PCs from this analysis for ancestry control. This study concludes that although AIMs panels are a cost-effective way of capturing population structure, genome-wide data should preferably be used when available

    Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence.</p> <p>Results</p> <p>In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice.</p> <p>Conclusion</p> <p>Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.</p

    Nucleolus: the fascinating nuclear body

    Get PDF
    Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed
    • …
    corecore