1,147 research outputs found

    Discovery of stars surrounded by iron dust in the LMC

    Full text link
    We consider a small sample of oxygen-rich, asymptotic giant branch stars in the Large Magellanic Cloud, observed by the Spitzer Space Telescope, exhibiting a peculiar spectral energy distribution, which can be hardly explained by the common assumption that dust around AGB stars is primarily composed of silicate grains. We suggest that this uncommon class of objects are the progeny of a metal-poor generation of stars, with metallicity Z12×103Z \sim 1-2\times 10^{-3}, formed 100\sim 100 Myr ago. The main dust component in the circumstellar envelope is solid iron. In these stars the poor formation of silicates is set by the strong nucleosynthesis experienced at the base of the envelope, which provokes a scarcity of magnesium atoms and water molecules, required to the silicate formation. The importance of the present results to interpret the data from the incoming James Webb Space Telescope is also discussed.Comment: Accepted for publication in ApJ Letter on 9 January 201

    Blazar surveys with WMAP and Swift

    Get PDF
    We present the preliminary results from two new surveys of blazars that have direct implications on the GLAST detection of extragalactic sources from two different perspectives: microwave selection and a combined deep X-ray/radio selection. The first one is a 41 GHz flux-limited sample extracted from the WMAP 3-yr catalog of microwave point sources. This is a statistically well defined sample of about 200 blazars and radio galaxies, most of which are expected to be detected by GLAST. The second one is a new deep survey of Blazars selected among the radio sources that are spatially coincident with serendipitous sources detected in deep X-ray images (0.3-10 keV) centered on the Gamma Ray Bursts (GRB) discovered by the Swift satellite. This sample is particularly interesting from a statistical viewpoint since a) it is unbiased as GRBs explode at random positions in the sky, b) it is very deep in the X-ray band (\fx \simgt 101510^{-15} \ergs) with a position accuracy of a few arc-seconds, c) it will cover a fairly large (20-30 square deg.) area of sky, d) it includes all blazars with radio flux (1.4 GHz) larger than 10 mJy, making it approximately two orders of magnitude deeper than the WMAP sample and about one order of magnitude deeper than the deepest existing complete samples of radio selected blazars, and e) it can be used to estimate the amount of unresolved GLAST high latitude gamma-ray background and its anisotropy spectrum.Comment: 3 pages, 3 figures, to appear in Proc. of the 1st GLAST Symposium, Feb 5-8, 2007, Stanford, AIP, Eds. S. Ritz, P. F. Michelson, and C. Meega

    The seven year Swift-XRT point source catalog (1SWXRT)

    Full text link
    Swift is a multi-wavelength observatory specifically designed for gamma-ray burst (GRB) astronomy that is operational since 2004. Swift is also a very flexible multi-purpose facility that supports a wide range of scientific fields such as active galactic nuclei, supernovae, cataclysmic variables, Galactic transients, active stars and comets. The Swift X-ray Telescope (XRT) has collected more than 150 Ms of observations in its first seven years of operations. We present the list of all the X-ray point sources detected in XRT imaging data taken in photon counting mode during the first seven years of Swift operations. All these point-like sources, excluding the Gamma-Ray Bursts (GRB), will be stored in a catalog publicly available (1SWXRT). We consider all XRT observations with exposure time > 500 s taken in the period 2005-2011. Data were reduced and analyzed with standard techniques and a list of detected sources for each observation was produced. A careful visual inspection was performed to remove extended, spurious and piled-up sources. Positions, count rates, fluxes and the corresponding uncertainties were computed. We have analyzed more than 35,000 XRT fields, with exposures ranging between 500 s and 100 ks, for a total exposure time of 140 Ms. The catalog includes ~ 89,000 entries, of which almost 85,000 are not affected by pile-up and are not GRBs. Since many XRT fields were observed several times, we have a total of ~36,000 distinct celestial sources. We computed count rates in three energy bands: 0.3-10 keV (Full, or F), 0.3-3 keV (Soft, or S) and 2-10 keV (Hard, or H). Each entry has a detection in at least one of these bands. In particular, we detect ~ 80,000, ~ 70,000 and ~ 25,500$ in the F, S and H band, respectively. Count rates were converted into fluxes in the 0.5-10, 0.5-2 and 2-10 keV bands. Some possible scientific uses of the catalog are also highlighted.Comment: 11 pages, 15 ps figures, accepted for publication in A&A. Abstract shortened with respect to the original versio

    The HELLAS2XMM survey. IX. Spectroscopic identification of super-EROs hosting AGNs

    Full text link
    We present VLT near-IR spectroscopic observations of three X-ray sources characterized by extremely high X-ray-to-optical ratios (X/O>40), extremely red colors (6.3<R-K<7.4, i.e. EROs) and bright infrared magnitudes (17.6<K<18.3). These objects are very faint in the optical, making their spectroscopic identification extremely challenging. Instead, our near-IR spectroscopic observations have been successful in identifying the redshift of two of them (z=2.08 and z=1.35), and tentatively even of the third one (z=2.13). When combined with the X-ray properties, our results clearly indicate that all these objects host obscured QSOs (4e44 < L(2-10keV) < 1.5e45 erg/s, 2e22 < N_H < 4e23 cm-2) at high redshift. The only object with unresolved morphology in the K band shows broad Halpha emission, but not broad Hbeta, implying a type 1.9 AGN classification. The other two objects are resolved and dominated by the host galaxy light in the K band, and appear relatively quiescent: one of them has a LINER-like emission line spectrum and the other presents only a single, weak emission line which we tentatively identify with Halpha. The galaxy luminosities for the latter two objects are an order of magnitude brighter than typical local L* galaxies and the derived stellar masses are well in excess of 10^11 Msun. For these objects we estimate black hole masses higher than 10^9 Msun and we infer that they are radiating at Eddington ratios L/L_Edd < 0.1. We discuss the implications of these findings for the coevolution of galaxies and black hole growth. Our results provide further support that X-ray sources with high X/O ratios and very red colors tend to host obscured QSO in very massive galaxies at high redshift.Comment: 7 pages, 5 figures, accepted for publication in A&

    Science with Simbol-X

    Full text link
    Simbol-X is a French-Italian mission, with a participation of German laboratories, for X-ray astronomy in the wide 0.5-80 keV band. Taking advantage of emerging technology in mirror manufacturing and spacecraft formation flying, Simbol-X will push grazing incidence imaging up to ~80 keV, providing an improvement of roughly three orders of magnitude in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. This will open a new window in X-ray astronomy, allowing breakthrough studies on black hole physics and census and particle acceleration mechanisms. We describe briefly the main scientific goals of the Simbol-X mission, giving a few examples aimed at highlighting key issues of the Simbol-X design.Comment: Proc. of the workshop "Simbol-X: The hard X-ray universe in focus", Bologna 14-16 May, 200

    High Momentum Probes of Nuclear Matter

    Full text link
    We discuss how the chemical composition of QCD jets is altered by final state interactions in surrounding nuclear matter. We describe this process through conversions of leading jet particles. We find that conversions lead to an enhancement of kaons at high transverse momentum in Au+Au collisions at RHIC, while their azimuthal asymmetry v_2 is suppressed.Comment: Contribution to the 4th international workshop High-pT physics at LHC 09, Prague; 6 pages, 6 figure

    Broadband Observations of the Compton-thick Nucleus of NGC 3393

    Get PDF
    We present new NuSTAR and Chandra observations of NGC 3393, a galaxy reported to host the smallest separation dual AGN resolved in the X-rays. While past results suggested a 150 pc separation dual AGN, three times deeper Chandra imaging, combined with adaptive optics and radio imaging suggest a single, heavily obscured, radio-bright AGN. Using VLA and VLBA data, we find an AGN with a two-sided jet rather than a dual AGN and that the hard X-ray, UV, optical, NIR, and radio emission are all from a single point source with a radius <0.2". We find that the previously reported dual AGN is most likely a spurious detection resulting from the low number of X-ray counts (<160) at 6-7 keV and Gaussian smoothing of the data on scales much smaller than the PSF (0.25" vs. 0.80" FWHM). We show that statistical noise in a single Chandra PSF generates spurious dual peaks of the same separation (0.55±\pm0.07" vs. 0.6") and flux ratio (39±\pm9% vs. 32% of counts) as the purported dual AGN. With NuSTAR, we measure a Compton-thick source (NH=2.2±0.4×10242.2\pm0.4\times10^{24} cm2^{-2}) with a large torus half-opening angle, {\theta}=79 which we postulate results from feedback from strong radio jets. This AGN shows a 2-10 keV intrinsic to observed flux ratio of 150. Using simulations, we find that even the deepest Chandra observations would severely underestimate the intrinsic luminosity of NGC 3393 above z>0.2, but would detect an unobscured AGN of this luminosity out to high redshift (z=5).Comment: Accepted for publication in ApJ. 15 Figures and 4 table

    The Population of High-Redshift Active Galactic Nuclei in the CHANDRA-Cosmos Survey

    Get PDF
    We present the high-redshift (3 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L_((2-10keV)) > 44.15 erg s^(–1)) space density up to z ~ 5 and a fainter luminosity range (43.5 erg s^(–1) 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys

    Unveiling obscured accretion in the Chandra Deep Field South

    Full text link
    A large population of heavily obscured, Compton Thick AGNs is predicted by models of galaxy formation, models of Cosmic X-ray Background and by the ``relic'' super-massive black-hole mass function measured from local bulges. However, so far only a handful of Compton thick AGNs have been possibly detected using even the deepest Chandra and XMM surveys. Compton-thick AGNs can be recovered thanks to the reprocessing of the AGN UV emission in the infrared by selecting sources with AGN luminosity's in the mid-infrared and faint near-infrared and optical emission. To this purpose, we make use of deep HST, VLT, Spitzer and Chandra data on the Chandra Deep Field South to constrain the number of Compton thick AGN in this field. We show that sources with high 24μ\mum to optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them (80±15\pm15%) are indeed likely to be highly obscured, Compton thick AGNs. The number of infrared selected, Compton thick AGNs with 5.8μ\mum luminosity higher than 1044.210^{44.2} erg s1^{-1} turns out to be similar to that of X-ray selected, unobscured and moderately obscured AGNs with 2-10 keV luminosity higher than 104310^{43} erg s1^{-1} in the redshift bin 1.2-2.6. This ``factor of 2'' source population is exactly what it is needed to solve the discrepancies between model predictions and X-ray AGN selection.Comment: Revised version, to be published by The Astrophysical Journa

    The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick AGN

    Get PDF
    The Circinus galaxy is one of the nearest obscured AGN, making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton-scattering by an optically-thick torus, where the intrinsic spectrum is a powerlaw of photon index Γ=2.22.4\Gamma = 2.2-2.4, the torus has an equatorial column density of NH=(610)×1024N_{\rm H} = (6-10)\times10^{24}cm2^{-2} and the intrinsic AGN 2102-10 keV luminosity is (2.35.1)×1042(2.3-5.1)\times 10^{42} erg/s. These values place Circinus along the same relations as unobscured AGN in accretion rate-vs-Γ\Gamma and LXL_X-vs-LIRL_{IR} phase space. NuSTAR's high sensitivity and low background allow us to study the short time-scale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the the spectral fitting results.Comment: Accepted for publication in Ap
    corecore