593 research outputs found

    Genetic Risk Score Predicting Risk of Rheumatoid Arthritis Phenotypes and Age of Symptom Onset

    Get PDF
    Cumulative genetic profiles can help identify individuals at high-risk for developing RA. We examined the impact of 39 validated genetic risk alleles on the risk of RA phenotypes characterized by serologic and erosive status.We evaluated single nucleotide polymorphisms at 31 validated RA risk loci and 8 Human Leukocyte Antigen alleles among 542 Caucasian RA cases and 551 Caucasian controls from Nurses' Health Study and Nurses' Health Study II. We created a weighted genetic risk score (GRS) and evaluated it as 7 ordinal groups using logistic regression (adjusting for age and smoking) to assess the relationship between GRS group and odds of developing seronegative (RF- and CCP-), seropositive (RF+ or CCP+), erosive, and seropositive, erosive RA phenotypes. In separate case only analyses, we assessed the relationships between GRS and age of symptom onset. In 542 RA cases, 317 (58%) were seropositive, 163 (30%) had erosions and 105 (19%) were seropositive with erosions. Comparing the highest GRS risk group to the median group, we found an OR of 1.2 (95% CI = 0.8-2.1) for seronegative RA, 3.0 (95% CI = 1.9-4.7) for seropositive RA, 3.2 (95% CI = 1.8-5.6) for erosive RA, and 7.6 (95% CI = 3.6-16.3) for seropositive, erosive RA. No significant relationship was seen between GRS and age of onset.Results suggest that seronegative and seropositive/erosive RA have different genetic architecture and support the importance of considering RA phenotypes in RA genetic studies

    TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits

    Get PDF
    Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3 x 10(-21)), A928V (rs35018800, OR = 0.53, P = 1.2 x 10(-9)), and I684S (rs12720356, OR = 0.86, P = 4.6 x 10(-7)). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6 x 10(-18)), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; P(omnibus) = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing \u3e500 phenotypes using electronic medical records (EMR) in \u3e29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases

    Allelic based gene-gene interactions in rheumatoid arthritis

    Get PDF
    The detection of gene-gene interaction is an important approach to understand the etiology of rheumatoid arthritis (RA). The goal of this study is to identify gene-gene interaction of SNPs at the allelic level contributing to RA using real data sets (Problem 1) of North American Rheumatoid Arthritis Consortium (NARAC) provided by Genetic Analysis Workshop 16 (GAW16). We applied our novel method that can detect the interaction by a definition of nonrandom association of alleles that occurs when the contribution to RA of a particular allele inherited in one gene depends on a particular allele inherited at other unlinked genes. Starting with 639 single-nucleotide polymorphisms (SNPs) from 26 candidate genes, we identified ten two-way interacting genes and one case of three-way interacting genes. SNP rs2476601 on PTPN22 interacts with rs2306772 on SLC22A4, which interacts with rs881372 on TRAF1 and rs2900180 on C5, respectively. SNP rs2900180 on C5 interacts with rs2242720 on RUNX1, which interacts with rs881375 on TRAF1. Furthermore, rs2476601 on PTPN22 also interacts with three SNPs (rs2905325, rs1476482, and rs2106549) in linkage disequilibrium (LD) on IL6. The other three SNPs (rs2961280, rs2961283, and rs2905308) in LD on IL6 interact with two SNPs (rs477515 and rs2516049) on HLA-DRB1. SNPs rs660895 and rs532098 on HLA-DRB1 interact with rs2834779 and four SNPs in LD on RUNX1. Three-way interacting genes of rs10229203 on IL6, rs4816502 on RUNX1, and rs10818500 on C5 were also detected

    Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate

    Get PDF
    High-speed, single-shot velocity-map imaging (VMI) is combined with carrier- envelope phase (CEP) tagging by a single-shot stereographic above-threshold ionization (ATI) phase-meter. The experimental setup provides a versatile tool for angle-resolved studies of the attosecond control of electrons in atoms, molecules, and nanostructures. Single-shot VMI at kHz repetition rate is realized with a highly sensitive megapixel complementary metal-oxide semiconductor camera omitting the need for additional image intensifiers. The developed camerasoftware allows for efficient background suppression and the storage of up to 1024 events for each image in real time. The approach is demonstrated by measuring the CEP-dependence of the electron emission from ATI of Xe in strong (≈1013 W/cm2) near single-cycle (4 fs) laser fields. Efficient background signal suppression with the system is illustrated for the electron emission from SiO2nanospheres

    Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene

    Get PDF
    Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G. C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.26 x 10(-6)). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted

    Genetics of rheumatoid arthritis: what have we learned?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting 0.5–1% of the population worldwide. The disease has a heterogeneous character, including clinical subsets of anti-citrullinated protein antibody (ACPA)-positive and APCA-negative disease. Although the pathogenesis of RA is poorly understood, progress has been made in identifying genetic factors that contribute to the disease. The most important genetic risk factor for RA is found in the human leukocyte antigen (HLA) locus. In particular, the HLA molecules carrying the amino acid sequence QKRAA, QRRAA, or RRRAA at positions 70–74 of the DRβ1 chain are associated with the disease. The HLA molecules carrying these “shared epitope” sequences only predispose for ACPA-positive disease. More than two decades after the discovery of HLA-DRB1 as a genetic risk factor, the second genetic risk factor for RA was identified in 2003. The introduction of new techniques, such as methods to perform genome-wide association has led to the identification of more than 20 additional genetic risk factors within the last 4 years, with most of these factors being located near genes implicated in immunological pathways. These findings underscore the role of the immune system in RA pathogenesis and may provide valuable insight into the specific pathways that cause RA

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or

    Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    Get PDF
    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena

    Psychiatric co-morbidity is associated with increased risk of surgery in Crohn's disease

    Get PDF
    Psychiatric co-morbidity, in particular major depression and anxiety, is common in patients with Crohn's disease (CD) and ulcerative colitis (UC). Prior studies examining this may be confounded by the co-existence of functional bowel symptoms. Limited data exist examining an association between depression or anxiety and disease-specific endpoints such as bowel surgery.National Institutes of Health (U.S.) (NIH U54-LM008748)American Gastroenterological AssociationNational Institutes of Health (U.S.) (NIH K08 AR060257)Beth Isreal Deaconess Medical Center (Katherine Swan Ginsburg Fund)National Institutes of Health (U.S.) (NIH R01-AR056768)National Institutes of Health (U.S.) (NIH U01-GM092691)National Institutes of Health (U.S.) (NIH R01-AR059648)Burroughs Wellcome Fund (Career Award for Medical Scientists)National Institutes of Health (U.S.) (NIH K24 AR052403)National Institutes of Health (U.S.) (NIH P60 AR047782)National Institutes of Health (U.S.) (NIH R01 AR049880

    Improving Case Definition of Crohnʼs Disease and Ulcerative Colitis in Electronic Medical Records Using Natural Language Processing

    Get PDF
    available in PMC 2014 June 01Background: Previous studies identifying patients with inflammatory bowel disease using administrative codes have yielded inconsistent results. Our objective was to develop a robust electronic medical record–based model for classification of inflammatory bowel disease leveraging the combination of codified data and information from clinical text notes using natural language processing. Methods: Using the electronic medical records of 2 large academic centers, we created data marts for Crohn’s disease (CD) and ulcerative colitis (UC) comprising patients with ≥1 International Classification of Diseases, 9th edition, code for each disease. We used codified (i.e., International Classification of Diseases, 9th edition codes, electronic prescriptions) and narrative data from clinical notes to develop our classification model. Model development and validation was performed in a training set of 600 randomly selected patients for each disease with medical record review as the gold standard. Logistic regression with the adaptive LASSO penalty was used to select informative variables. Results: We confirmed 399 CD cases (67%) in the CD training set and 378 UC cases (63%) in the UC training set. For both, a combined model including narrative and codified data had better accuracy (area under the curve for CD 0.95; UC 0.94) than models using only disease International Classification of Diseases, 9th edition codes (area under the curve 0.89 for CD; 0.86 for UC). Addition of natural language processing narrative terms to our final model resulted in classification of 6% to 12% more subjects with the same accuracy. Conclusions: Inclusion of narrative concepts identified using natural language processing improves the accuracy of electronic medical records case definition for CD and UC while simultaneously identifying more subjects compared with models using codified data alone.National Institutes of Health (U.S.) (NIH U54-LM008748)American Gastroenterological AssociationNational Institutes of Health (U.S.) (NIH K08 AR060257)Beth Isreal Deaconess Medical Center (Katherine Swan Ginsburg Fund)National Institutes of Health (U.S.) (NIH R01-AR056768)Burroughs Wellcome Fund (Career Award for Medical Scientists)National Institutes of Health (U.S.) (NIH U01-GM092691)National Institutes of Health (U.S.) (NIH R01-AR059648
    corecore