80 research outputs found

    Evaluating pathway enumeration algorithms in metabolic engineering case studies

    Get PDF
    The design of cell factories for the production of compounds involves the search for suitable heterologous pathways. Different strategies have been proposed to infer such pathways, but most are optimization approaches with specific objective functions, not suited to enumerate multiple pathways. In this work, we analyze two pathway enumeration algorithms based on graph representations: the Solution Structure Generation and the Find Path algorithms. Both are capable of enumerating exhaustively multiple pathways using network topology. We study their capabilities and limitations when designing novel heterologous pathways, by applying these methods on two case studies of synthetic metabolic engineering related to the production of butanol and vanillin

    Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    Get PDF
    International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system

    Stoichiometric representation of geneproteinreaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction

    Get PDF
    Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.DM was supported by the Portuguese Foundationfor Science and Technologythrough a post-doc fellowship (ref: SFRH/BPD/111519/ 2015). This study was supported by the PortugueseFoundationfor Science and Technology (FCT) under the scope of the strategic fundingof UID/BIO/04469/2013 unitand COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145FEDER-000004) fundedby EuropeanRegional Development Fund under the scope of Norte2020Programa Operacional Regional do Norte. This project has received fundingfrom the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 686070. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Computationally efficient flux variability analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flux variability analysis is often used to determine robustness of metabolic models in various simulation conditions. However, its use has been somehow limited by the long computation time compared to other constraint-based modeling methods.</p> <p>Results</p> <p>We present an open source implementation of flux variability analysis called fastFVA. This efficient implementation makes large-scale flux variability analysis feasible and tractable allowing more complex biological questions regarding network flexibility and robustness to be addressed.</p> <p>Conclusions</p> <p>Networks involving thousands of biochemical reactions can be analyzed within seconds, greatly expanding the utility of flux variability analysis in systems biology.</p

    OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    Get PDF
    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis

    Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    Get PDF
    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering

    Computational Design of Auxotrophy-Dependent Microbial Biosensors for Combinatorial Metabolic Engineering Experiments

    Get PDF
    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools)

    Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models

    Get PDF
    Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here

    Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constraint-based flux analysis of metabolic network model quantifies the reaction flux distribution to characterize the state of cellular metabolism. However, metabolites are key players in the metabolic network and the current reaction-centric approach may not account for the effect of metabolite perturbation on the cellular physiology due to the inherent limitation in model formulation. Thus, it would be practical to incorporate the metabolite states into the model for the analysis of the network.</p> <p>Results</p> <p>Presented herein is a metabolite-centric approach of analyzing the metabolic network by including the turnover rate of metabolite, known as flux-sum, as key descriptive variable within the model formulation. By doing so, the effect of varying metabolite flux-sum on physiological change can be simulated by resorting to mixed integer linear programming. From the results, we could classify various metabolite types based on the flux-sum profile. Using the <it>i</it>AF1260 <it>in silico </it>metabolic model of <it>Escherichia coli</it>, we demonstrated that this novel concept complements the conventional reaction-centric analysis.</p> <p>Conclusions</p> <p>Metabolite flux-sum analysis elucidates the roles of metabolites in the network. In addition, this metabolite perturbation analysis identifies the key metabolites, implicating practical application which is achievable through metabolite flux-sum manipulation in the areas of biotechnology and biomedical research.</p
    corecore