582 research outputs found

    cutaneous vascular alterations in psoriatic patients treated with cyclosporine

    Get PDF
    Videocapillaroscopy can be used to assess cutaneous microcirculation modifications in vivo, and therefore allows assessment of variations in the microvascular architecture in psoriatic subjects during treatment. The aim of this study was to observe and quantify the modifications of the superficial capillary bed in psoriatic plaques during treatment with cyclosporin A. Twelve patients with psoriasis vulgaris were treated with an initial dose of 4 mg/kg/day cyclosporin A over a period of 3 months with periodic clinical and capillaroscopic assessments. Clinical resolution of the lesions and a reduction in microcirculatory alterations was observed in 70% of patients, although none returned to a normal capillaroscopic pattern

    Improved diffusion Monte Carlo propagators for bosonic systems using Ito calculus

    Get PDF
    The construction of importance sampled diffusion Monte Carlo (DMC) schemes accurate to second order in the time step is discussed. A central aspect in obtaining efficient second order schemes is the numerical solution of the stochastic differential equation (SDE) associated with the Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic predictor-corrector schemes solving the SDE and consistent with It\uf4 calculus are used in DMC simulations of helium clusters. These schemes are numerically compared with alternative algorithms obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical tools provided by It\uf4 calculus. The numerical results show that predictor-corrector methods are indeed accurate to second order in the time step and that they present a smaller time step bias and a better efficiency than second order split-operator derived schemes when computing ensemble averages for bosonic systems. The possible extension of the predictor-corrector methods to higher orders is also discussed

    Standardization and validation of a novel and simple method to assess lumbar dural sac size

    Get PDF
    AimTo develop and validate a simple, reproducible method to assess dural sac size using standard imaging technology.Materials and methodsThis study was institutional review board-approved. Two readers, blinded to the diagnoses, measured anterior–posterior (AP) and transverse (TR) dural sac diameter (DSD), and AP vertebral body diameter (VBD) of the lumbar vertebrae using MRI images from 53 control patients with pre-existing MRI examinations, 19 prospectively MRI-imaged healthy controls, and 24 patients with Marfan syndrome with prior MRI or CT lumbar spine imaging. Statistical analysis utilized linear and logistic regression, Pearson correlation, and receiver operating characteristic (ROC) curves.ResultsAP-DSD and TR-DSD measurements were reproducible between two readers (r = 0.91 and 0.87, respectively). DSD (L1–L5) was not different between male and female controls in the AP or TR plane (p = 0.43; p = 0.40, respectively), and did not vary by age (p = 0.62; p = 0.25) or height (p = 0.64; p = 0.32). AP-VBD was greater in males versus females (p = 1.5 × 10−8), resulting in a smaller dural sac ratio (DSR) (DSD/VBD) in males (p = 5.8 × 10−6). Marfan patients had larger AP-DSDs and TR-DSDs than controls (p = 5.9 × 10−9; p = 6.5 × 10−9, respectively). Compared to DSR, AP-DSD and TR-DSD better discriminate Marfan from control subjects based on area under the curve (AUC) values from unadjusted ROCs (AP-DSD p < 0.01; TR-DSD p = 0.04).ConclusionIndividual vertebrae and L1–L5 (average) AP-DSD and TR-DSD measurements are simple, reliable, and reproducible for quantitating dural sac size without needing to control for gender, age, or height

    AI for Zero-Touch Management of Satellite Networks in B5G and 6G Infrastructures

    Get PDF
    Satellite Communication (SatCom) networks are become more and more integrated with the terrestrial telecommunication infrastructure. In this paper, we shows the current status of the still ongoing European Space Agency (ESA) project”Data-driven Network Controller Orchestration for Real time Network Management-ANChOR”. In particular, we propose a Long Short-Term Memory (LSTM)based methodology to drive the dynamic selection of the optimal satellite gateway station, which will be performed by combining different kinds of information (i.e. traffic profile, network and weather conditions). Some preliminary results on the real world dataset shows the effectiveness of the proposed approach

    Collective Awareness for Abnormality Detection in Connected Autonomous Vehicles

    Get PDF
    The advancements in connected and autonomous vehicles in these times demand the availability of tools providing the agents with the capability to be aware and predict their own states and context dynamics. This article presents a novel approach to develop an initial level of collective awareness (CA) in a network of intelligent agents. A specific collective self-awareness functionality is considered, namely, agent-centered detection of abnormal situations present in the environment around any agent in the network. Moreover, the agent should be capable of analyzing how such abnormalities can influence the future actions of each agent . Data-driven dynamic Bayesian network (DBN) models learned from time series of sensory data recorded during the realization of tasks (agent network experiences) are here used for abnormality detection and prediction. A set of DBNs, each related to an agent , is used to allow the agents in the network to reach synchronously aware possible abnormalities occurring when available models are used on a new instance of the task for which DBNs have been learned. A growing neural gas (GNG) algorithm is used to learn the node variables and conditional probabilities linking nodes in the DBN models; a Markov jump particle filter (MJPF) is employed for state estimation and abnormality detection in each agent using learned DBNs as filter parameters. Performance metrics are discussed to asses the algorithm’s reliability and accuracy. The impact is also evaluated by the communication channel used by the network to share the data sensed in a distributed way by each agent of the network. The IEEE 802.11p protocol standard has been considered for communication among agents. Performances of the DBN-based abnormality detection models under different channel and source conditions are discussed. The effects of distances among agents and of the delays and packet losses are analyzed in different scenario categories (urban, suburban, and rural). Real data se..

    Insect cells platforms for fast production of Pseudo-Typed VLPs for drug and vaccine development

    Get PDF
    Expression systems capable of delivering high concentrations of membrane proteins in their native structure are essential in the vaccine field as well as in drug discovery. In this work, we took advantage of insect cell expression and site-specific gene integration based on flipase-mediated cassette exchange (FMCE) technology to generate cell platforms for efficient production of membrane proteins on the surface of a protein scaffold, namely enveloped virus-like particles (VLPs). The expression of membrane proteins concomitantly with capsid proteins of enveloped viruses (e.g. HIV Gag or influenza M1) will enable their capturing in lipid rafts of the cellular plasma membrane and their display on the surface of budding VLPs, thus providing a native conformation for downstream assays. Parental insect Sf-9 and High Five cells were randomly tagged with GFP-fused Gag or M1 proteins and FACS enriched with cells tagged in genomic “hot-spots” supporting high expression. A linker including a Flp recognition target (FRT) site was used to allow posterior removal of the marker gene from the particle through cassette exchange. By confocal microscopy we could observe that Gag localizes preferentially at the plasma membrane whereas M1 disperses within the cell. Upon promoting Flp-mediated recombination in the tagging populations, cassette exchange was well succeeded, allowing to recover cells tagged in loci supporting FMCE. We are currently evaluating the capability of both core proteins as scaffolds to display GPCRs (e.g. beta-2 adrenergic receptor) and Influenza HA proteins. For the latter, we will present recent results on the feasibility of combining stable and baculovirus-mediated expression of HA in insect High Five cells for production of multi-HA influenza enveloped VLPs towards the development of an “universal” vaccine. This strategy surpasses standard methods for production of multivalent Influenza VLPs such as coinfections or the use of larger, unstable vectors. Overall, modular insect cells platforms are being generated to be readily adaptable for production of a broad range of VLP-based vaccines as well as receptor display particles for drug screening or antibody discovery. Acknowledgments: Funding from European Commission (Project EDUFLUVAC; Grant nr. 602640) and Fundação para a Ciência e a Tecnologia through the project EXPL/BBB-BIO/1541/2013 and PhD fellowships SFRH/BD/86744/2012 and SFRH/BD/90564/2012
    corecore