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The construction of importance sampled diffusion Monte Carlo �DMC� schemes accurate to second
order in the time step is discussed. A central aspect in obtaining efficient second order schemes is
the numerical solution of the stochastic differential equation �SDE� associated with the
Fokker-Plank equation responsible for the importance sampling procedure. In this work, stochastic
predictor-corrector schemes solving the SDE and consistent with Itô calculus are used in DMC
simulations of helium clusters. These schemes are numerically compared with alternative algorithms
obtained by splitting the Fokker-Plank operator, an approach that we analyze using the analytical
tools provided by Itô calculus. The numerical results show that predictor-corrector methods are
indeed accurate to second order in the time step and that they present a smaller time step bias and
a better efficiency than second order split-operator derived schemes when computing ensemble
averages for bosonic systems. The possible extension of the predictor-corrector methods to higher
orders is also discussed. © 2006 American Institute of Physics. �DOI: 10.1063/1.2371077�

I. INTRODUCTION

In the study of low-temperature boson systems such as
rare gas clusters, the diffusion Monte Carlo �DMC� method1

appears as an attractive computational complement to experi-
mental techniques due to its ability of exactly solving the
Schrödinger equation for these species. In brief, DMC usu-
ally contains two key components, namely, an importance
sampled diffusion of points in configurational space �i.e., the
diffusing walkers are guided toward important regions of
space by means of an approximate wave function �T� and a
branching process that changes the local number of walkers
according to a specified weight. Whereas importance sam-
pling greatly reduces the statistical error in DMC, the
branching process makes the asymptotic distribution ap-
proach the exact ground state �in the limit of small time step
�→0� for bosonic systems.

It can be shown that the introduction of the trial wave
function �T as a guide for the diffusion is equivalent to writ-
ing the modified Schrödinger equation2 as follows:

�1�

where f�x , t�=�0�T,3 EL�x�=�T�x�−1H�T�x� is the local en-
ergy, H is the N-dimensional Hamiltonian, t is the imaginary
time, F�x�=�T�x�−1��T�x� is the quantum force, and D is a
diagonal diffusion matrix. The operator L acting on f�x , t� is

the Fokker-Planck �Schmoluchowski� operator, whose sta-
tionary solution is �T

2�x� and is the one responsible for the
importance sampling during a DMC simulation.

Formally, the solution of the modified Schrödinger equa-
tion �Eq. �1�� can be obtained by iterating the action of the
projection operator exp�−��L+EL�� over an initial distribu-
tion f�x ,0� until convergence to the ground state is reached:

lim
n→�

�e−��L+EL��nf�x,0� → �T�x��0�x� , �2�

where, obviously, t=n� provides the connection with Eq. �1�.
This formal equation is, however, not particularly useful be-
cause it assumes that either an analytical representation in
configuration space of exp�−��L+EL�� or a numerical
scheme capable of producing identical results is known. In
practice, having the exact analytical form of the projector
exp�−��L+EL�� is equivalent to knowing all the eigenstates
and eigenvalues of Eq. �1�, which is clearly an extremely
difficult task to be tackled for many-body systems. As a con-
sequence, the theory of DMC relies on the possibility of
writing an accurate approximation for the projector present-
ing a systematic error that can be made as small as needed by
selecting appropriately the parameter �, i.e., the time step.
One such approximation is provided by the following sym-
metric splitting of the evolution operator:

e−��L+EL� � e−��/2�ELe−�Le−��/2�EL, �3�

which is known to be formally second order in �.4 If the
action of the two operators e−�L and e−�EL was exactly
known, or if it was possible to simulate it numerically with
some exact scheme, the systematic �time step� error for the
mean value of a local property OL�x�=�T�x�−1O�T�x� overa�Electronic mail: mellam@cardiff.ac.uk
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the limiting distribution f�x ,�� would be guaranteed to be
second order for � small enough.5 Unfortunately, whereas the
exact simulation of e−�EL does not represent a problem, the
latter being usually treated as a weighting operator, the situ-
ation for e−�L is made far more complicated by the impossi-
bility of reproducing exactly its action for a general many-
body system. As a consequence, it becomes necessary to
approximate the effect of e−�L with some numerical method,
thus introducing additional errors in the representation of the
exact e−��L+EL� besides neglecting a double commutator im-
plicit in Eq. �3�.

The effect of the Fokker-Planck operator driving the dis-
tribution of points toward the stationary solution of the
Fokker-Planck equation Lf�x�=0 �with L shown in Eq. �1��
is often simulated by solving the approximate stochastic dif-
ferential equation �SDE� �hereafter Euler scheme� as
follows:2

Yn+1
�k� = Yn

�k� + D�k,k�F�k��Yn�� + b�k,k��Wn
�k�, �4�

where Yn
�k� is the kth coordinate of the vector representing the

position in space of all particles in the system after n simu-
lation steps, F�k��Yn� is the kth component of the quantum
force at Yn, �= tn+1− tn is the simulation time step, �Wk is an
N�0,�� Gaussian random number with zero average and vari-
ance equal to �, and �bbT��k,k�=D�k,k� is the kth diagonal ele-
ment of the diffusion matrix in Eq. �1�. This is a finite-step
approximation of the exact SDE sampling f�x�=�T

2�x�,

Xt
�k� = Xt0

�k� + D�k,k��
t0

t

F�k��Xs�ds + b�k,k��
t0

t

dWs
�k�, �5�

with Wt being a Brownian motion in RN �at time t�. In this
respect, it has recently been recognized that the accurate so-
lution of Eq. �5� is crucial in obtaining more efficient DMC
schemes,6,7 a finding that led Chin6 to propose improved
short time approximations for the Fokker-Planck propagator
e−�L based on the use of exponential splitting formulas,4

effectively overcoming some of the limitations implicit in
Eq. �4�. In his original work, Chin proposed two alternative
exponential splittings �LGV2a and LGV2b defined in the
following� to solve Eq. �5�, letting the form of these more
accurate representations for e−�L suggest the structure of the
numerical algorithm to solve the SDE. In this way, numerical
schemes giving ensemble averages accurate, at least, to sec-
ond order in � were derived,6 an important improvement over
Eq. �4� which is only accurate to first order in �. Besides, the
LGV2a algorithm proposed in Ref. 6 was rewritten in a less
canonical way �dubbed LGV2c�, providing an alternative
derivation of another scheme proposed previously by
Helfand8 and tested by Anderson by simulating the electronic
structure of H and He.9

In the context of DMC simulations, the availability of a
second order algorithm to simulate e−�L means that the sym-
metric splittings presented in Eq. �3� become second order
not only formally but also in practice. These, in turn, may
present a reduced time step bias, so that, given a maximum
acceptable error for the system properties, one may be al-
lowed to use a larger time step making the simulation far
more efficient. In a similar way, higher order �e.g., fourth�

factorizations of the evolution operators �i.e., e−�L or
e−��L+EL�� are known to provide even smaller time step biases
than Eq. �4� or second order algorithms.7,10 This improve-
ment, however, comes at the cost of computing F�x� many
more times and requires the additional calculation of poten-
tial and local energy gradients.

In spite of their improved performance, the increased
cost per step featured by high order algorithms suggests that
it may be advantageous to seek better second order approxi-
mations to the DMC evolution operator within the frame-
work provided by Eq. �3�. Since the effect of e−��/2�EL is
simulated exactly by the branching step, the overall task is
reduced to finding a better numerical scheme simulating the
effect of the Fokker-Planck operator. In this work, we ad-
dress the issue of solving Eq. �5� by seeking more accurate
numerical schemes with the mathematical theory �Itô calcu-
lus� specifically developed for SDE’s.11 This gives us an al-
ternative approach to the one provided in Ref. 6, where a
similar task was carried out by working at the Fokker-Planck
equation �FPE� level rather than at the SDE level as we pro-
pose. Despite this difference, it is, of course, assured that the
ensemble averages obtained using SDE theory will corre-
spond to the properties of the Fokker-Planck equation.11 In
this respect, the net advantage provided by using Itô calculus
is represented by the knowledge of precise mathematical
conditions that need to be fulfilled by the numerical scheme
to present a given order of convergence with respect to �. In
other words, it would allow us to prove the order in � of the
computed ensemble averages.12

At this stage, it must be stressed that the convergence
toward the solution of a SDE could be measured in two
ways. First, there is one indicated as “strong” convergence,
where an accurate approximation for the trajectory solving
the SDE is sought. Second, there is “weak” convergence,
where only accurate distributions are desired and which is
easier to obtain. Luckily, in DMC the interest lies on the
ensemble average of first or higher moments of a local prop-
erty OL�x�, these quantities relying only on the properties of
the weak convergence. As a consequence of these arguments,
we are therefore allowed to use the weak Itô-Taylor
expansion12 as starting point for the construction of numeri-
cal schemes approximating Eq. �5�, and we review briefly
this mathematical tool in the next section to provide the
reader with a self-containing discussion. Following this in-
troduction, two numerical schemes presented in Refs. 12 and
13 solving Eq. �5� with second order accuracy in � are re-
vised, and it is illustrated how we can confirm the consis-
tency of these algorithms with theory.12 Generally speaking,
these schemes belong to the categories of “explicit second
order” and “predictor-corrector” approaches specifically de-
veloped to solve SDE’s, the heuristic application of
predictor-corrector methods borrowed from the theory of or-
dinary differential equations usually leading to poor
performances.14 To our best knowledge, no previous attempt
of testing the performances of these two families in DMC
simulations of bosonic clusters has been presented in the
literature. Two alternative second order schemes provided in
Ref. 6 are also investigated in the framework of Itô calculus,
proving that they are consistent with the weak Itô-Taylor
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expansion. Finally, we show the results of numerical simula-
tions on model systems and doped helium clusters obtained
employing the presented second order algorithms. The dis-
cussion of these results provides evidences that the predictor-
corrector schemes derived from the weak Itô-Taylor expan-
sion are more accurate and efficient than split-operator based
ones, facilitating their application in different contexts as
well as possible algorithmic extensions. We also provide
strong arguments indicating that it is advantageous to substi-
tute the widely used DMC employing an acceptance/
rejection step with the predictor-corrector scheme.

II. SECOND-ORDER NUMERICAL SCHEME

The theory used to develop high order weak Itô-Taylor
expansions is well covered in the literature.12 Thus, this sec-
tion will only review the approach to obtain a second order
weak Itô-Taylor numerical scheme providing some of the
details in Appendix A, and we refer the reader to Ref. 12 for
further details. As starting point, one expresses the integrand
F�Xs� in Eq. �5� using the Itô formula15 such that the kth
component of F�Xs� is

F�k��Xs� = F�k��Xt0
� + �

0

s

L�0�F�k��Xz�dz

+ �
j=1

N �
t0

s

L�j�F�k��Xz�dWz
�j�, �6�

where the operators are

L�0� =
�

�t
+ �

i=1

N

D�i,i�F�i� �

�x�i� +
1

2�
i=1

N

D�i,i� �2

�x�i�2 , �7�

L�j� = b�j,j� �

�x�j� �8�

for the case of a constant diagonal diffusion matrix b. With
the integrand of Eq. �5� expanded with the Itô formula, we
demonstrate in Appendix A the derivation of the simplified
second order weak Itô-Taylor scheme as follows:

Yn+1
�k� = Yn

�k� + D�k,k��F�k��Yn��n +
1

2
L�0�F�k��Yn��n

2

+ �
j=1

N

L�j�F�k��Yn�
1

2
�n�Wn

�j�	 + b�k,k��Wn
�k�. �9�

The weak Itô-Taylor scheme is central to this work and is a
valuable starting point due to its mathematically proved or-
der of convergence and the fact that alternative numerical
schemes can be tested against Eq. �9� as discussed in the
following.

The proof of order � convergence for a weak scheme
such as Eq. �9� is provided by theorem 14.5.2 in Ref. 12
�e.g., it is proved that �=1 and �=2 for Eqs. �4� and �A3�,
respectively�. Theorem 14.5.2 requires F�k��X� to fulfill the
Lipschitz condition and certain smoothness conditions, and
that all multiple integrals of the proper order are included. In
our specific case, this means that for �=2, only single and

double but no triple integrals present in the weak Itô-Taylor
expansion should be included �cf. Eq. �A3��. In particular,
the theorem states that the error for a computed expectation
value with the second order weak Taylor scheme in Eq. �9�
satisfies


�g�XT� − g�YT
�����
 � Cg�max

2 , �10�

where �� is the expectation value of the difference between
the values assumed by a test function g�·� over points in
space visited by the exact process XT and by the process YT

���

simulated with Eq. �9�, and �max is the largest time step used
in the interval of integration �0,T�.

It is important to note that derivatives of the quantum
force �the drift in SDE language� are present in Eq. �9�, and
this is rather inconvenient for the sake of numerical simula-
tions because the number and complexity of the required
terms increase quickly with the system size. As a conse-
quence, the development of schemes alternative to the weak
Itô-Taylor expansion becomes a worthy exercise. In this re-
spect, it is useful to remind that, given a single step scheme
Y proved to be of order � �cf. Eq. �9� for order 2� and an

alternative scheme Ŷ���, the latter is also of order � if it
fulfills the condition

��
j=1

l

�Ŷ�ij� − y�ij�� − �
j=1

l

�Y�ij� − y�ij���
� K�y���+1, ij = 1, . . . ,N, l = 1, . . . ,2� + 1, �11�

where x�i� denotes the ith component of vector x, K�y� is
limited to polynomial growth, N is the dimensionality, and
the same initial position y is used in each of the two products

in Eq. �11�.16 In this case, Ŷ��� is said to be � equivalent to Y.
Equation �11� can be used to derive alternative, derivative-
free higher order schemes as done in Refs. 12 and 16 or, as
used below, to examine already proposed schemes.

III. DERIVATIVE-FREE SCHEMES FOR SDE

We start this section by considering two derivative-free
approaches proposed in Ref. 13, simplifying them for the
case of a constant diagonal diffusion matrix. These algo-
rithms are the explicit second order scheme �E2�

Yn+1
�k� = Yn

�k� + D�k,k� 1
2 �F�k��Yn� + F�k��Ỹn+1���n + b�k,k��Wn

�k�,

�12�

with

Ỹn+1
�k� = Yn

�k� + D�k,k�F�k��Yn��n + b�k,k��Wn
�k�, �13�

and the second order predictor-corrector scheme �PC2�,
where the predictor �Y5 � is second order

Yn+1
�k� = Yn

�k� + D�k,k� 1
2 �F�k��Yn� + F�k��Y5 n+1���n + b�k,k��Wn

�k�,

�14�

Y5 n+1
�k� = Yn

�k� + D�k,k� 1
2 �F�k��Yn� + F�k��Ỹn+1���n + b�k,k��Wn

�k�,

�15�
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Ỹn+1
�k� = Yn

�k� + D�k,k�F�k��Yn��n + b�k,k��Wn
�k�. �16�

It is instructive to verify that E2 is indeed second order by

expanding F�Ỹn+1� in Eq. �12� to first order using the Itô
formula �cf. Eq. �6��

F�k��Ỹn+1� = F�k��Yn� + L�0�F�k��Yn�� + �
j=1

N

L�j�F�k�

��Yn��Wn
�j� �17�

and inserting Eq. �17� into Eq. �12� to obtain

Yn+1
�k� = Yn

�k� + D�k,k��F�k��Yn�� + 1
2L�0�F�k��Yn��2

+ �
j=1

N

L�j�F�k��Yn�
1

2
��Wn

�j�	 + b�k,k��Wn
�k�. �18�

This shows that E2, rewritten as a single time step process, is
consistent with Eq. �9�. Using similar arguments, the scheme
PC2 �cf. Eq. �14�� is also found to be consistent with Eq. �9�.

At this point, few considerations on the stability of nu-
merical schemes appear necessary to motivate the implemen-
tation and testing of PC2, which requires one more quantum
force evaluation than E2. In the literature concerned with the
numerical solution of deterministic ordinary differential
equations, it is usually found that resorting to an implicit
scheme where Yn+1 is a function of both Yn and Yn+1 do
improve the stability of the solution with respect to the time
step, with the net effect of producing acceptable solutions
�i.e., with an error smaller that a chosen limit� on a wider
range of time steps.17 The same issue was addressed also for
SDE’s in Ref. 13, where it was suggested that a predictor-
corrector scheme may present improved performance and in-
herit some of the stability properties of the implicit stochastic

counterpart �where Y5 n+1 is replaced with Yn+1 in Eq. �14��. In
our view, the possibility of finding improved stability when
using PC2 is a strong motivation for its implementation and
testing despite the additional cost.

Obviously, E2 and PC2 are not the only second order
algorithms for SDE’s present in the literature, the importance
of simulating the Fokker-Planck equation having given im-
petus to the construction of alternative derivative-free
schemes. The majority of the latter are based on the parti-
tioning of the Fokker-Planck operator using a symmetric ex-
ponential splitting similar to Eq. �3�. In this work, we are
particularly interested in the performance of two second or-
der algorithms �LGV2a and LGV2b� presented in Ref. 6,
which are multistep algorithms with the following
derivative-free form for LGV2a:

Ŷ�k� = Yn
�k� + 1

2D�k,k�F�k��Yn + 1
4DF�Yn���� , �19�

Ŷ
ˆ

= Ŷ�k� + b�k,k��Wn
�k�, �20�

Yn+1
�k� = Ŷ

ˆ
+ 1

2D�k,k�F�k��Ŷ
ˆ

+ 1
4DF�Ŷˆ ��	� , �21�

with DF�yn� indicating the matrix-vector product between D
and the quantum force, and for LGV2b:

Ŷ�k� = Yn
�k� + b�k,k��W˜

n
�k�, �22�

Ŷ
ˆ

= Ŷ�k� + D�k,k�F�k��Ŷ + 1
2DF�Ŷ���� , �23�

Yn+1 = Ŷ
ˆ

+ b�k,k��W˜

n+1/2��k� , �24�

where �W̃�k� and �W̃��k� are N�0,� /2� random numbers. As a
way toward a better understanding of their performance, it is
useful to expand LGV2a and LGV2b by rewriting them as
single time step schemes and putting them in the context of
the second order weak Itô-Taylor expansion �Eq. �9�� as done
for E2 in the previous section. In expanding these schemes,
one should bear in mind that the time evolution is deter-
mined by differential equations of either pure diffusion type
or pure drift type �see Eqs. �19�–�24� for their integrated
forms�. This means that the Itô formula �cf. Eq. �6�� with
F=0 in the operator L�0� should be used for the diffusive part
and the third term in L�0�, whereas L�j� �j�1� must be set to
zero for the drift part.

Starting with LGV2b, the term F�k��Ŷ +1/2DF�Ŷ��� in
Eq. �23� can be rewritten as

F�k��Ŷ +
1

2
DF�Ŷ��	

= F�k��Ŷ� + �
j=1

D�j,j�F�j��Ŷ�
�

�Y�j�F
�k��Ŷ�

�

2
�25�

due to the pure drift step Ŷ +1/2DF�Ŷ��. Expanding

F�k��Ŷ� to the lowest possible order in � and �W̃, one gets

F�k��Ŷ� = F�k��Yn� +
1

2�
j

D�j,j� �2

�Y�j�2 F�k��Yn�
�

2

+ �
j

b�j,j� �

�Y�j�F
�k��Yn��W˜ �j�. �26�

Substituting Eqs. �26� and �25� into Eq. �23� and retaining
terms up to second order in Eq. �24� give

Yn+1
�k� = Yn

�k� + bk,k��W˜

n
�k�

+ �W˜

n+1/2��k� � + D�k,k��F�k��Yn�� +
1

2�
i=1

N

D�i,i�F�i��Yn�

�
�

�Y�i�F
�k��Yn��2 +

1

2�
i=1

N

D�i,i� �2

Y�i�2 F�k��Yn�
�2

2

+ �
i=1

N

b�j,j� �

�Y�j�F
�k��Yn���W˜

n
�i�	 , �27�

which is in a form similar to the second order Itô-Taylor
expansion. Evaluating the following ensemble average of the
stochastic integrals in Eq. �27�:
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���W˜

n
�k� + �W˜

n+1/2��k� ���Wn
˜ �i��t0

= ��Wn
˜ �k���Wn

˜ �i��t0
+ 0 = 1

2�2	k,i �28�

one is led to discover that the expectation value of Eq. �B3�
in Appendix B is satisfied also by Eq. �27�. Similar argu-
ments can be used to show that also the other expectation
values in Appendix B are satisfied. Using the same proce-
dure, it would be possible to rewrite LGV2a �cf. Eq. �21�� by
obtaining a scheme identical to Eq. �9�. One shall therefore
conclude that both LGV2a and LGV2b are consistent with a
weak second order Itô-Taylor scheme. Incidentally, we men-
tion here that the third scheme presented in Ref. 6 �LGV2c�
is identical to E2, for which the consistency with the second
order Itô-Taylor scheme has been already proved.

IV. NUMERICAL RESULTS AND DISCUSSION

The main result presented in the previous sections is the
formal demonstration that in addition to E2 and PC2, also
LGV2a and LGV2b are second order schemes consistent
with a weak Itô-Taylor expansion. As for the computational
cost, one would expect E2 and LGV2b to be the least expen-
sive ones requiring only two force evaluations and one or
two vectors of N random numbers per time step for E2 and
LGV2b, respectively. LGV2a is likely to be the most costly,
necessitating four force evaluations.

In the following sections, the performances of the four
second order schemes are compared using numerical simula-
tion results. Our strategy is similar to the one employed in
Refs. 7 and 18, where model systems were initially simulated
to provide indications on the time step bias of each algo-
rithm. Different from what was done previously,7,18 in this
initial stage we decided to evaluate only the performance of
SDE integration algorithms, obtaining results that are
equivalent to variational Monte Carlo �VMC� simulations in
the limit of �→0. This allows us to clearly distinguish be-
tween the component of the error due to the discrete approxi-
mation of the SDE and to the operator splitting formula em-
ployed in DMC. The numerical results for one of our model
systems �harmonic oscillator� are also compared with the
analytical formula derived by means of a symbolic integra-
tion program, providing further support for the theory pre-
sented in the previous section and our numerical data. Sub-
sequently, a more thorough set of tests for the four schemes
is presented using helium clusters doped with Mg.19 In these
tests, both VMC and DMC simulations were run on MgHe12

as representative case using a Mg–He interaction potential
derived from CCSDT calculations.20

A. VMC tests

LGV2a and LGV2b were implemented in their original
form, with the deterministic integrals evaluated using the
second order Runge-Kutta method.6 Because of this, a single
simulation step using LGV2a is twice more expensive than
one using LGV2b. E2 and PC2 algorithms were imple-
mented following Eqs. �12� and �14� as suggested in Ref. 12.

The first test on a model system was conducted by simu-
lating the three-dimensional �3D� Gaussian distribution

�T�r� = exp�− 
r2� , �29�

with 
=0.5, the numerical VMC results for �r−1� obtained
from the simulations shown in Fig. 1. From this, it is evident
that PC2 outperforms all other algorithms over a very wide
range of time step. Interestingly, PC2 seems also to provide a
better order of convergence than expected from the theoret-
ical analysis proposed previously. However, this is not un-
common for simple models such as the harmonic oscillator
and should not be taken as a sound evidence for a superqua-
dratic behavior �vide infra�. The improvement in perfor-
mance provided by PC2 is particularly striking when com-
pared with LGV2b: PC2 allows us to use a time step roughly
an order of magnitude larger than LGV2b, obtaining similar
systematic errors. In turn, this provides a clear algorithmic
advantage due to the faster data decorrelation obtained when
using large time steps. Despite the somewhat limited im-
provement provided over LGV2b, E2 nevertheless appears
as a suitable candidate to substitute for LGV2b due to the
similar cost per time step.

The simplicity of the harmonic oscillator allows one to
derive the analytical form for the eigenfunction with unit
eigenvalue of the integral equation associated with each of
the four tested algorithms. In other words, it is possible to
obtain the stationary distribution f�x , t� satisfying

fapp�x�,t + �� =� dx�x��e−�Lapp�x�fapp�x,t� = fapp�x�,t� ,

�30�

where Lapp represents the approximate Fokker-Planck opera-
tor associated with each algorithm and fapp�x , t� is the asso-
ciated stationary distribution. Whereas obtaining analytical
results for LGV2a and LGV2b was found to be
straightforward,7,18 it was less so for E2 and PC2. Indeed,
one needs to take into account that the same Gaussian dis-
placement is used during all predictor/corrector moves and
that a convolution is necessary to feedback the predicted po-
sition into the correction step. In all four cases, we found that
it was possible to Taylor expand the stationary distributions
obtained from Eq. �30� with respect to �, obtaining the lead-
ing components of the error. The latter read

fLGV2a�x,t� = e−2
x2
�1 − 
3x2�2 + O��3�� , �31�

fLGV2b�x,t� = e−2
x2
�1 + 4
3x2�2 + O��3�� , �32�

fE2�x,t� = e−2
x2
�1 − 2
3x2�2 + O��3�� , �33�

fPC2�x,t� = e−2
x2
�1 + 2
4x2�3 + O��4�� , �34�

clearly indicating the second order of LGV2a, LGV2b, and
E2, as well as the third order behavior for PC2. Moreover,
the direct comparison between the previous equations and
the results in Fig. 1 also points out the good agreement, in
terms of the relative error, between analytical and numerical
results.

To obtain a more stringent test of the SDE schemes, we
also employed a 3D trial wave function reminiscent of the
model functions used to simulate He droplets, namely,
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�T�r� = exp�− ar − b/r5� , �35�

where a=10 and b=2.5. This choice of parameters is consis-
tent with the one obtained after optimization for systems
such as AgHen �n=2–8�,21 and are representative of He
strongly bound to a heavy attractive center. The results of our
simulations are presented in Fig. 2. For ��10−2.4

�0.004� a.u., the performance of the algorithms closely re-
sembles the one discussed for the harmonic oscillator. How-
ever, for larger � both E2 and PC2 clearly outperform
LGV2a and LGV2b. More interestingly, a sudden change in
behavior is seen for LGV2a and LGV2b, deviating strongly
from the expected quadratic convergence of the error. This
clearly indicates a narrower range of convergence for LGV2a
and LGV2b, an unpleasant feature apparently not shared by
E2 and PC2 whose range of convergence is almost an order
of magnitude wider. The consequences of these findings on
the performance of the algorithms will be discussed in the
following.

Although preliminary, some conclusions can be drawn
from the presented results. First, it is evident that E2 outper-
forms the equally economical LGV2b, while at the same
time providing a better stability and a wider convergence

range. Second, the time step bias for PC2 is found to be
smaller than for LGV2a, the latter being more expensive due
to an additional force evaluation. So, the predictor-corrector
schemes based on the Itô-Taylor expansion appear as suitable
candidates to substitute for the second order exponential for-
mulas proposed in Ref. 6. Bearing all this in mind, we de-
cided to avoid any further testing on LGV2a because of the
high cost-performance ratio manifested during the model
simulations and refer the reader to Ref. 7 for a relative com-
parison between this algorithm and LGV2b.

As a concluding test for the performance of the SDE
schemes in VMC simulations, the sampling of the ground
state distribution for MgHe12 was carried out using E2, PC2,
LGV2b, and the Euler scheme in Eq. �4�. The form of the
wave function was taken from Ref. 19 and the parameters
were slightly modified to generate a less smooth local en-
ergy. This choice increases the time step bias for the average
local energy, making also more apparent shortcomings in the
simulation algorithms. The mean values of the interaction
potential as a function of the time step are shown in Fig. 3,
together with the “exact” value obtained from a standard
Metropolis simulation. The results for this system present a
behavior similar to the one shown by the two model systems,
with the Euler algorithm converging linearly with respect to
�. Both LGV2b and E2 appear to have a quadratic conver-
gence to the �→0 limit, whereas the PC2 results could be
properly fitted only using a cubic function. Once again, PC2
is found to perform better than the other schemes, allowing
to use a time step roughly four times larger than LGV2b and
twice as large than E2 while producing similar systematic
errors. We also found that the simulations run with both Eu-
ler and LGV2b became unstable for ��300 a.u., whereas E2
and PC2 appeared to be more stable, perhaps owing to a
better control exerted on sudden changes in the quantum
force, with the simulations becoming unstable only for
��600 a.u.

FIG. 1. Error in �r−1� �bohr−1 , log10�
err
�� for the harmonic oscillator ground
state exp�−
r2� as a function of time step �a.u., log10���� for schemes E2
���, PC2 ���, LGV2a ���, and LGV2b ��. Errors below 10−3.2 are domi-
nated by statistical fluctuations.

FIG. 2. Error in �r−1� �bohr−1 , log10�
err
�� for the trial wave function in Eq.
�35� as a function of time step �a.u., log10���� for schemes E2 ���, PC2 ���,
LGV2a ���, and LGV2b ��. Errors below 10−4 are dominated by statistical
fluctuations.

FIG. 3. Expectation value of the interaction potential �V� �K� as a function
of the time step �a.u.� for a VMC simulation of MgHe12. The Metropolis
result represents the limiting value for �→0 that should be obtained by
all simulation algorithms. The continuous lines are linear �Euler�, quadratic
�E2 and LGV2b�, and cubic �PC2� fits to the numerical results.
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B. DMC tests

The good performances of both E2 and PC2 in sampling
the trial distribution �T

2 �Figs. 1 and 2� suggest that it may be
possible to reduce the DMC time step error in the simulation
of bosonic clusters. Before describing our DMC results, it is
perhaps worth stressing once more that the order �hence the
error� of the simulations is somewhat limited by the choice
of using Eq. �3� as an approximation of the exact propagator.
In other words, one should not expect the order of the time
step bias to be higher than second even though the exact
simulation of the Fokker-Planck equation was possible, an
outcome due to the neglect of double commutators �e.g.,
�T , �V ,T��� in the exponential formulas.4 Nevertheless, accu-
rate integrators for the Langevin equation may result in a
substantially lower time step bias and, perhaps, in a more
robust algorithm with a better defined order of convergence,
as suggested by the VMC simulations on MgHe12.

Our test case for DMC is, again, provided by MgHe12,
for which precise results could be obtained at low computa-
tional cost. All simulations were run by sampling, at least,
3500 blocks composed by 500 steps each, and with a target
population of 5000 walkers. The results have been checked
for any residual presence of serial correlation between blocks
and the associate standard error corrected accordingly. Figure
4 presents the average value of the local energy as a function
� in the simulations. In this case, the improvement provided
by E2 and PC2 over Euler and DMC2b �obtained using
LGV2b in Eq. �3�� in terms of the time step bias is clearly
evident. Specifically, PC2 reduces the time step bias by
roughly a factor of 3 with respect to E2 and by roughly a
factor of 6 with respect to DMC2b. Figure 4 also presents
results obtained using the standard DMC algorithm with
acceptance/rejection step,22 as commonly implemented using
Eq. �4�. In this case, the expected linear behavior is modified
by the additional Metropolis step, which, despite producing a
smaller time step bias than the Euler algorithm, induces a

trend of �EL� versus � difficult to interpret theoretically. We
consider this to be a serious drawback, which limits the pos-
sibility of estimating the systematic error of the simulations
or of extrapolating their results. Besides, the comparison be-
tween the standard DMC algorithm and second order PC2
scheme indicates a smaller bias for the latter if ��400 a.u.,
suggesting PC2 as a very useful alternative despite the lack
of the Metropolis correction step. The latter, however, ap-
pears to have a positive effect on the stability of the simula-
tions. In fact, these are found to be stable over a wider range
of � �0–800 a.u.� than in the case of DMC2b �0–100 a.u.�,
E2 �0–400 a.u.�, or PC2 �0–300 a.u.�.

The robust order of E2 and PC2 �when compared with
the standard DMC scheme� and their wide range of quadratic
convergence provide us with the additional possibility of ex-
ploiting Richardson’s extrapolation method23 to improve the
accuracy of the numerical results a posteriori.24 The results
obtained by extrapolating the data as suggested in Ref. 24 are
therefore presented in Fig. 4 and provide a substantially re-
duced time step bias. A similar behavior was obtained for
other observables �e.g., the average interaction potential�,
once again a direct consequence of the robust second order
behavior of E2 and PC2.

V. CONCLUSIONS

In this work, the performances of the two algorithms E2
and PC2 when used in importance sampled DMC simula-
tions of bosonic clusters have been theoretically scrutinized
and numerically assessed. By numerically comparing E2-
and PC2-derived DMC schemes with several other
algorithms,6,2 we found that the first two schemes provided
smaller time step bias than split-operator derived algorithms
using a larger number of force evaluations. In particular, PC2
presents excellent performances in comparison to LGV2a/b
Ref. 6 and we consider it as the best available second order
algorithm, among the ones we tested, in the context of DMC
simulations using Eq. �3�.

The interplay between algorithm efficiency and time step
error becomes extremely important when simulating systems
larger than MgHe12. Due to the increased cost, it is quite
common to avoid the extrapolation to �→0 by choosing a
maximum acceptable discretization error for some property
of the system and selecting the time step accordingly.10

When using this protocol with bosonic clusters, it becomes
readily apparent that the larger the time step, the smaller is
the standard error for a given simulation length.10 This is
indicated in Fig. 5, which shows the simulation standard er-
ror ���� of �EL� for MgHe12 as a function of �.25 Independent
of the algorithm, ���� appears to be proportional to �−1/2

�represented by the continuous lines in Fig. 5� for 50��
�400 a.u., stressing the fact that an increase in the time step
by a factor of 2 should improve the algorithm efficiency by
the same amount. Assuming that an acceptable systematic
error for �EL� is 0.1%, from Figs. 4 and 5 it is apparent that
PC2 may improve the efficiency of DMC simulations by a
factor of 10 over the simpler Euler algorithm and by a factor
of roughly 3 with respect to DMC2b. Taking into account
also the additional cost represented by the larger number of

FIG. 4. Expectation value of the local energy �EL� �K� as a function of the
time step �a.u.� for DMC simulations of MgHe12. The continuous lines are
linear �Euler� and quadratic �E2, PC2, and DMC2b� fits to the numerical
results. The results for the Euler scheme with acceptance/rejection �Acc/Rej�
step were not fitted due to the lack of a theoretical justification for the order
of this algorithm. The extrapolated ��=0� values have been obtained assum-
ing a second order behavior for �EL� as a function of �.
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force evaluation required, the advantage provided by PC2 is
somewhat reduced, making it roughly three times more effi-
cient than the Euler scheme and almost twice as efficient
than DMC2b. Compared with the algorithm using the
acceptance/rejection step, PC2 allows to increase the time
step by a factor of 1.5–2, an improvement that is nullified by
the larger computational cost per step. It is, however, impor-
tant to stress that both E2- and PC2-derived DMC schemes
allow the extrapolation.23 of large time step data with a net
gain in the overall efficiency of the simulation protocol. As
an example, we point out �see Fig. 4� that the extrapolation
of E2 data at �=300, 400 a.u. substantially improves the ac-
curacy, reducing the time step bias by a factor of 15 �e.g., see
�=100 a.u.� and the total computational cost by a factor of 2.
So, despite the necessity of running two simulations, the ex-
trapolation makes the usage of E2 and PC2 advantageous
also with respect to the algorithm employing acceptance/
rejection.

As a final comment on the algorithm performances, it is
important to stress that both E2- and PC2-derived schemes
were found to be more robust than the simpler Euler and
DMC2b, therefore allowing to use longer time steps. A simi-
lar, if not better, stability is also featured by the commonly
used algorithm employing a rejection step, probably due to
the control exerted by the Metropolis step on the final posi-
tion of the walker. This may prove beneficial also for E2- or
PC2-based schemes, but we found it difficult to provide the
analytical form of the transition matrix simulated by E2 and
PC2, which is needed to compute the acceptance probability.

We conclude this discussion by pointing out that the in-
creased performances provided by E2 and PC2 pave the way
for further improvements and for their usage in different con-
texts. For instance, one may be able to extrapolate the results
of the integration algorithm “on the fly” producing, with the
help of the Feynman-Kac formula,12 a DMC algorithm
showing at least a third order behavior. As an alternative
application of E2 and PC2, we mention the reptation quan-
tum Monte Carlo �RQMC� algorithm26 which is used to
compute imaginary-time correlation functions. Also in this

case, the focus must be placed on accurate weak schemes as
thoroughly examined in Ref. 27, and both E2 and PC2 may
be used in RQMC to reduce the number of segments in the
“reptile”. This is likely to have a strong impact on the simu-
lation efficiency due the quadratic scaling of the cost with
the reptile length. In this respect, we are planning to imple-
ment a new version of RQMC employing PC2 to compute
response properties for large doped helium clusters. Needless
to say, if only unbiased �i.e., from �0

2, not �T�0� expectation
values were required, other DMC-based algorithms28–30

could be used instead of RQMC. In this case, we would
expect E2/PC2 to be easily integrated in those approaches,
with only minor modifications in the part of the code carry-
ing out the DMC evolution starting from �T

2. Because
the latter is usually sampled using unbiased Metropolis
schemes before the DMC propagation, the lack of
acceptance/rejection step in E2/PC2 introduces no additional
theoretical difficulties in obtaining unbiased expectation
values.
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APPENDIX A: SECOND ORDER ITÔ-TAYLOR
EXPANSION

With the quantum force expanded in the form of Eq. �6�
and inserted into Eq. �5� we obtain

Yt
�k� = Yn

�k� + D�k,k�F�k��Yn��
tn

tn+1

ds + b�k,k��
tn

tn+1

dW�k� + R ,

�A1�

where the remainder is

R = D�k,k��
tn

tn+1 �
0

s

L�0�F�k��Yz�dzds

+ D�k,k��
j

N �
tn

tn+1 �
tn

s

L�j�F�k��Yz�dWz
�j�ds . �A2�

By setting the remainder R to zero in Eq. �A1�, a scheme
accurate to first order in time step is obtained, and this can be
easily identified with Eq. �4�. The second order weak Itô-
Taylor scheme is obtained by substituting Eq. �6� for the
functions L�0�F�k��Yz� and L�j�F�k��Yz� in Eq. �A2� and it takes
the form

FIG. 5. Decorrelated standard error for the expectation value of the local
energy �EL� �K� as a function of the time step � �a.u.� for DMC simulations
of MgHe12. The continuous lines are fitted to the E2 and Acc/Rej results
using the functional form ����=a�−1/2.
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�A3�

In using Eq. �A3� for a numerical scheme, the deterministic
integrals are exactly evaluated as

�
tn

tn+1

ds = �n, �
tn

tn+1 �
tn

s

dzds =
�n

2

2
, �A4�

where �n= tn+1− tn. The evaluation of the stochastic integrals
in a weak Itô expansion16 need not be as strict as for their
deterministic counterparts. Actually, it is only necessary to
fulfill a specific set of conditions for the conditional expec-
tation values of I�k� and I�j,0� in order to have a second order
scheme �these conditions are listed in Appendix B�. In other
words, I�k� and I�j,0� can be substituted with two alternative

stochastic integrals Ĩ�k�, Ĩ�j,0� provided that the conditional
expectation value of the latter differs from those listed in
Appendix B �Eqs. �B1�–�B4�� by, at most, K�3 �K�0�. This
is the case if the stochastic integrals are evaluated as

Ĩ�k� = �Wn
�k�, Ĩ�j,0� = 1

2�n�Wn
�j�, �A5�

where �Wn
�j� can be generated as a Gaussian random variable

N�0,�n� �see Ref. 12, p. 225�. Rewriting Eq. �A3� using Eqs.
�A4� and �A5�, we get the simplified second order weak Itô-
Taylor scheme �Eq. �9��.

APPENDIX B: MULTIPLE ITÔ INTEGRALS

Below, we list the conditional expectation values of the
stochastic integrals �I�k� , I�j,0�� in Eq. �A3�. These are of rel-
evance for the second order Itô-Taylor expansion12

�I�i��t0
= �I�i�I�j�I�k��t0

= �I�i,0�I�j�I�k��t0
= �I�i�I�j�I�k�I�l�I�m��t0

= 0, �B1�

�I�i�I�j��t0
= �	i,j , �B2�

�I�i�I�j,0��t0
= 1

2�2	i,j , �B3�

�I�i�I�j�I�k�I�l��t0

= �
3�2 if i = j = k = l

�2, �i, j,k,l� consists of two distinct pairs

of identical numbers

0 otherwise,
�
�B4�

where 	i,j is a Kronecker delta, �i , j ,k , l ,m�� �1,2 , . . . ,N�,
and the subscript t0 means that the integrals in each expec-
tation value are evaluated from the same initial instant.
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