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Abstract—The advancements in connected and autonomous
vehicles in these times demand the availability of tools providing
the agents with the capability to be aware and predict their
own states and context dynamics. This paper presents a novel
approach to develop an initial level of collective awareness (CA) in
a network of intelligent agents. A specific collective self-awareness
functionality is considered, namely agent-centered detection of
abnormal situations present in the environment around any
agent in the network. Moreover, the agent should be capable
of analyzing how such abnormalities can influence the future
actions of each agent. Data-driven Dynamic Bayesian Network
(DBN) models learned from time series of sensory data recorded
during the realization of tasks (agent network experiences) is
here used for abnormality detection and prediction. A set of
DBNs, each related to an agent is used to allow the agents
in the network to reach synchronously aware about possible
abnormalities occurring when available models are used on a
new instance of the task for which DBNs have been learned.

A Growing Neural Gas (GNG) algorithm is used to learn
the nodes variables and conditional probabilities linking nodes
in the DBN models; a Markov Jump Particle Filter (MJPF) is
employed for state estimation and abnormality detection in each
agent using learned DBNs as filter parameters. Performance
metrics are discussed to asses the algorithm’s reliability and
accuracy. The impact is also evaluated by the communication
channel used by the network to share data sensed in a distributed
way by each agent of the network. The IEEE 802.11p protocol
standard has been considered for communication among agents.
Performances of the DBN based abnormality detection models
under different channel and source conditions are discussed.
The effects of distances among agents and of the delays and
packet losses are analyzed in different scenario categories (urban,
suburban, rural).
Real data sets are also used acquired by autonomous vehicles
performing different tasks in a controlled environment.

Index Terms—Self awareness, Collective awareness, Markov
Jump Particle Filter, Dynamic Bayesian Network, Connected
vehicles, Abnormality detection.

I. INTRODUCTION

Internet of things (IoT) is a concept that connects various
physical objects and allows them to exchange data over the

Internet. IoT is a forefront technology which helps to reduce
human efforts by enabling autonomous control capabilities and
intelligence in machines and makes human life easier. IoT can
produce a network of intelligent systems when combined with
machine learning and signal processing techniques. IoT with
smart objects has many applications in the field of surveillance
[1], transportation [2], crowd monitoring [3], etc. The term
Internet of Vehicles (IoV) has been defined whenever smart
physical objects are vehicles [4]. The number of vehicles is
increasing exponentially as a consequence of the rapid increase
in world population and the expansion of big cities. As a
result, road accidents also increase dramatically by various
reasons such as distracted driving, adverse weather conditions,
speeding, unavailability of contextual aware data, etc. These
factors highlight the need for making the objects ‘self-aware’
and sharing these awareness data among other objects, in order
to develop and enrich contextual awareness. Each object needs
to be aware not only of itself but also of the other objects and
conditions of the surrounding area.

Inter-connectivity and efficient communication schemes are
required to develop such collective awareness among smart
objects which, in case of intelligent vehicles, can help assure
the safety and efficiency in driving. By making objects self-
aware, each object would be able to detect abnormal situations
in the environment and make appropriate decisions to avoid
accidents, threats, or other dangerous actions. If we consider
a network of such agents which periodically communicate the
acquired information among each other, the future knowledge
and actions of one agent can affect the other ones’ behaviour.
For this reason, reliable communication among agents is
mandatory to let them successfully cooperate. However, data
exchange among objects can be adversely affected by different
factors, such as the distance among them, the transmission
delay, and the environmental conditions.

In this work, Dynamic Bayesian Networks (DBNs) [5]
have been used as data-driven models learned from sensory
data for the detection of abnormalities and the prediction of
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future states of the agents. DBN’s are hierarchical probabilistic
models that make it possible to filter observations received
from multiple sensors in order to understand and predict
the possible object states that have generated the observa-
tions themselves. Data-driven DBN models require temporal
dynamic relationships among object states that are learned
from training data acquired along with the accomplishment
of reference tasks by the agent. Such learned dynamic models
make it possible to analyze time-series, i.e. time sequences of
observations acquired in successive experiences of the same
type to estimate if they occur in statistically normal (i.e.
similar) ways. A probabilistic density function (PDF), namely
the posterior of unknown states conditioned over observations
is the typical recursive result obtained by a DBN filter at
each time instant. A specific class of DBN models is here
used, i.e. Switching Linear Dynamic Systems (SLDS) [6] or
switching models. In such models, it is possible to represent
a complex non-linear dynamic behavior with a probabilistic
sequential combination of linear dynamic models. Switching
random variables are used within the SLDS as higher-level
hidden discrete variables one to one associated with different
linear dynamic models defined in the DBN. The joint posterior
of state and switching variable (superstate) of an object
can be recursively estimated within a SLDS. Markov Jump
Particle Filter (MJPF) [7] is an inference algorithm that allows
estimation of posterior and prediction to be performed when
a SLDS is available. Another example of Bayesian inference
approach to be used for switching models, however dealing
with non-linear dynamic models, is Rao-Blackwellized particle
filter (RBPF) [8].

The first objective of this work is to make it possible
awareness functionalities are exhibited by each agent of a
network that is performing a collaborative task. Abnormality
detection is considered as a first functionality necessary to
reach collective awareness in the agent’s network. As abnor-
mality detection should be performed synchronously by all
agents, communication of information required to obtain it
must be considered. To achieve this goal, each agent has to
learn in an offline training phase, a set of switching DBN
models, one for each object in the network that is executing
a collaborative task. In this way, during subsequent online
situations, each agent will be provided by a model of expected
normal behaviors of all agents in the network, including itself.
A bank of MJPF filters will be applied to each DBN by
each agent, that provides an estimation of posteriors and
predictions for each agent. In addition, MJPF is provided of
an abnormality detection capability, obtained by measuring
the fitness of the dynamic models to current data at different
levels of each DBN. Probabilistic distances between predicted
priors and likelihood information inside each DBN node are
used for this purpose. The second objective is to assess the
impact of realistic information exchange among objects on the
abnormality detection feature of collective awareness. With a
reliable and efficient communication, agents should be capable
of sharing ground truth observations acquired in a distributed
way by each of them with all other agents in the network.
Each agent should dispatch appropriately the ground truth
observations received from each remote transmitting agent

to the appropriate MJPF where it can be compared with
the respective state predicted by the relative DBN model
to estimate the possible presence of abnormalities. In this
way, each agent can estimate global abnormality conditions
that can arise in any of the agents that compose the net-
work. Self Awareness (SA) of single agents can so become
Collective Awareness (CA) of the agent’s network. Different
distributed communication schemes at increasing complexity
can be devised to reach such a CA. The agents could for
example either communicate all their first-person observations
to each other and then apply MJPFs for all agents to obtain
abnormality estimation or communicate and share the outputs
of only their own MJPFs using locally observed data. In this
latter way, abnormality situations would be communicated,
and local observations could remain private within the agent.
In this paper, a first analysis is provided to indicate which
communication strategy could be the best one depending on
contextual parameters like the distance between the agents, the
transmission delay, and the achievable data rates of the chosen
communication protocol.

The main contributions of the paper can be summarized as
follows:

• A method is provided to learn normality models for
situations providing training data series, models repre-
sented as banks of DBNs. It is shown that an agent's
network can use such learned models to online detect
abnormal situations that occur in any of the intelligent
objects of the network. Results of specific unsupervised
learning algorithms used in the training phase to estimate
the DBN models, like the GNG algorithm, are provided.
Also, the results coming from a specific SLDS inference
method working on learned DBNs, namely a MJPF model
extended to become able to detect abnormalities, are
discussed.

• The robustness of the distributed abnormality detection
feature of CA with respect to a realistic communication
channel model are discussed; performances are evaluated
in order to assess, on the one hand, the reliability and
accuracy of abnormality detection under perfect commu-
nication hypothesis, and, on the other hand, the robustness
is also analyzed of the system model against packet losses
and transmission delays of the communication channel
among objects.

The remainder of this paper is structured as follows. Some
of the main articles and works in the literature regarding
self-aware vehicular networks are reported and summarized
in Section II. Section III reports our proposed strategy for
anomaly detection, describing in detail the principles exploited
in the training phase, the steps included in the test phase, and
how the communication among agents has been modelled.
The experimental setup and the communication system are
included in Section IV, proposed anomaly detection scheme
and the communication among objects are described in Section
V. Conclusions and possible future work are drawn in Section
VI.
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II. STATE OF THE ART

This section describes some of the related work regarding
the development of self-awareness in agents and how such
agents can perform better if they are part of a network.
According to the statistics, about 75 billion “things” will be
connected to the Internet by 2025, and a larger portion will
be vehicles [9]. The number of vehicles equipped with IoT
technology is increasing as a consequence of the rapid growth
of vehicles numbers and the spread of the IoT technology,
leading to a change from the conventional Vehicle Ad-hoc
Networks (VANETs) [10] concept to the Internet of Vehicles
(IoV) principle. Allowing inter-vehicles communication with
the aim to make them smarter and self-aware is the main
principle of IoV, where the concept of self-awareness mainly
describes the cognitive capability of living entities such as
humans. Self-awareness can be defined as the capability to
observe itself as well as the surrounding environment, i.e.
contextual awareness. If a vehicle is self-aware capable, it
can be provided of models allowing it to detect abnormal
situations and consequently decide emergency actions before
the situation goes beyond its control. Moreover, such important
information has to be shared by communications with other
vehicles in the network to make all the surrounding entities
aware of the overall situation. This shared awareness is here
defined as collective awareness (CA).

In [11], the authors propose an approach to develop a
multilevel self-awareness model by focusing on one agent.
The developed self-awareness approach is learned by using
multisensory data of a vehicle normally interacting in an
environment. The model allows the agent to become able
to detect abnormal situations present in its surrounding en-
vironment. The learning process of the self-awareness model
for autonomous vehicles based on data collected from human
driving is described in another work [12]. Other related works
in this direction aim to enrich the experience of co-operative
and secure driving [13], [14].

Artificial intelligence and machine learning are two multi-
disciplinary concepts which are growing in interest in a
number of research studies in the past few years. However,
we still lack a genuine theory that explains the underly-
ing principles and methods that would tell how to design
agents that can not only understand their environment but
also be conscious of what they do. Moreover, agents have
to understand the purpose of their own actions to take a
timely initiative beyond the already programmed goals set by
humans. Another important aspect is that agents should be able
to incrementally learn from their own previous and current
experiences and share learned models with other agents.
The issues mentioned above are not new, and researchers
in various fields of science (artificial intelligence, cognitive
science, neuroscience, and robotics) have already addressed
the problems in organization and operation of a system capable
of performing perception, action, interaction and learning up
to different levels of development [15]. The term “cognitive
architectures” is commonly used in the Cognitive Sciences,
Neuroscience, and Artificial Intelligence (AI) communities to
refer to propositions of system organization models designed

to mimic the human mind. Most of the previous works that
aimed at developing cognitive architectures did not address the
issue of self-awareness. Although, some neuroscientists have
considered self-awareness as an expression of consciousness
[16], others propose to ground it in the robust theoretical
framework of integrated information theory [17]. Firstly, it
is required to investigate if and how a machine can develop
self-awareness and then how it can communicate with other
self-aware agents to achieve common goals. To do so, it is
important to understand the concept clearly and to propose
a computational model that can account for it [18], [19]. To
make the agent self aware, it is crucial to develop and inte-
grate perceptual abilities for self-localization and environment
interpretation, decision-making and deliberation, learning and
self-assessment, and interaction with other agents. If we could
bring all those up to the implementation level, it would be
possible to make the agent self-aware, i.e., awareness of
being in control of it's own actions and responsible for their
outcomes [20]. In addition to that, such an integration of the
results and characteristics of various subconscious deliberative
processes (such as perception, action, and learning) in a shared
global workspace [21] appears fundamental in humans to
enable meta-cognitive processes such as the ability to report
to oneself and to other agents about internal state, decisions
and the way these decisions were made [22]. Additionally, it
is vital to develop predictive models of agents [23].

To bring IoT into its next cognitive level, more sophisticated
AI needs to be injected across the entire network to make
it self-aware. Currently, autonomous vehicles may combine
data from cameras, onboard sensors, and lidars, making them
intelligent and able to learn and adapt to each possible situa-
tion. But if they are not connected, then we cannot call them
smart. Uber and Tesla are self-driving vehicles, but they are not
connected, and they do not cooperate with each other. The two
strong technology trends, one in the mobile communications
industry and the other in the automotive industry, are becoming
intermixed and will provide new capabilities and functionality
for future Intelligent Transport Systems (ITSs) and future
driving. As the vehicles are continuously growing more aware
of their environment due to the higher number of sensors
they are equipped with, the amount of interactions rises, both
in between vehicles and between vehicles and other road
users. As a result, the significance and reliance on capable
communication systems for ego-things/Machine to Machine
(M2M) are becoming a key asset. On the other hand, the
mobile communications industry has connected more than 5
billion people over the last 25 years, and the next step in
wireless connectivity is to link all kinds of devices. According
to Ericsson’s technical mobility report published in 2017,
around 29 billion connected devices are forecast by 2022, of
which approximately 18 billion will be related to IoT.

In [11], the authors propose a method to develop a mul-
tilayered self-awareness in autonomous entities and exploit
this feature to detect abnormal situations in a given context.
Most of the related works [12], [24] use either position-related
information to make inferences or the agents are not connected
to each other. In an autonomous agent, the information related
to the control plays a significant role in the prediction of future
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states and actions of the entity. Moreover, it is imperative to
establish a reliable and accurate network among the agents to
allow them to communicate important awareness information
in order to make the entire network fully aware of the context
where the agents operate.

III. METHODOLOGY

This section first describes how the ”awareness” can be
modelled into the things that can generate ”ego-things”. Ego-
things can be defined as intelligent autonomous entities that
can perceive their internal as well as external parameters
and adapt themselves when they face abnormal situations.
Secondly, we investigate how the network of such ego-things
can establish timely and efficient communication to develop
collective awareness (CA).

The collective awareness in a network of ego-things is
defined here as the capability of a set of ego-things in a
network to understand whether perception-action information
processing models they are provided of, are performing in
a normal way. Normality is defined in a Bayesian inference
sense, i.e. as the capability of dynamic models describing
hidden object state characteristics as confirmed by observa-
tions of available agents ego-things’ sensors. Such an ability
is provided to each ego-thing in the network and concerns
the whole set of agents. Communication is available in the
network to exchange information necessary to detect abnor-
malities of all ego-things by each agent in the network. Each
ego-thing can so achieve awareness not only about the fitness
of its own models when predicting its own state but also
about the possibility that abnormality conditions affect the
actions of other cooperating agents with respect to predictions
provided by their dynamic models. Such a collective awareness
can trigger agents’ decision systems to perform emergency
routines or switching to other available modalities.

The collective awareness is based on detecting jointly and
synchronously abnormal situations present in the context. It
allows appropriate decisions that can be taken to maintain the
stability of the entire network of systems.

The ego-things are equipped with various sensors. The
collected data from each ego-thing have been initially syn-
chronized and then categorized into different groups. In this
work, we mainly consider the data related to the control part
of the ego-thing along with the trajectory data in order to
develop collective awareness. The proposed method can be
divided into two parts: offline training and online testing. A
block diagram representation of the proposed method is shown
where offline training and online processing carried on by each
ego-thing in the network is shown in Fig. 1. During the offline
training phase, each ego-thing learns probabilistic filtering
models from agent sensors’ dynamic data series collected
while collectively performing a reference situation task. This
implies that during the training phase, all agents perform the
task autonomously or in a teleoperated way. The collected
data series provides information on data collected by sensors’
observing esoperceptive and proprioceptive data. By assuming
that observation models can remain invariant along the process
(i.e. the model for estimating state likelihood from sensory

observations is given and fixed), a set of dynamic models
is learned, composed by a discrete vocabulary of continuous
conditional probabilities functions and by a transition matrix.
Such models are organized within a Dynamic Bayesian Net-
work. Such a process is repeated for each agent, and the
set of DBNs related to each agent is made available to the
collective ensemble of ego things. In the online phase, each
DBN is used for filtering agent sensory data within each agent.
The comparison of learned dynamic prediction models with
incoming observations allows each agent to estimate the level
of fitness and to measure abnormality of the collective situation
in a distributed way. However, to this end, communications
have to be maintained to allow each agent to filter and
detect abnormalities also of other ego-things in the network.
Filtering is performed using a Bayesian filter appropriate for
the type of DBNs learned, i.e. switching models. Markov
Jump Particle Filter (MJPF) has been here chosen as the
dynamic probability models in learned DBNs are here linear
and continuous Gaussian, so allowing Kalman filters to be used
at a continuous level in switching models. In Figure 1, it is
highlighted how such filters are here provided of the additional
capability of measuring abnormalities, in addition to filtering,
such capability is at the basis of CA.

A. Offline training phase

In the training phase, each ego-thing will learn a switching
Dynamic Bayesian Network (DBN) model for itself, i.e. from
the data collected by its own sensors, and one DBN model for
each other ego-thing present in the network by exploiting the
data generated by that ego-thing’s sensors. In this work, ego-
things are autonomous vehicles, and the number of vehicles
is limited to two. In Fig. 1, the first part (grey shaded area)
represents the training phase of an ego-thing, and the steps
followed to learn the switching DBN models are explained
below.

1) Data pre-processing and state estimation: First, the
collected multisensory data are synchronized by using their
time stamps. In this work, we considered as a case study
the data sequences related to two low dimensionality sensorial
data, namely odometry as representative of ego-thing’s esoper-
ceptive sense of position and steering as proprioceptive control
information of the ego-thing. An initial basic generalized filter
[25] has been applied to the data sequence for the estimation of
generalized states. The generalized state estimation of acquired
data is described below.
Let Zenk be the measurements in the ego-thing en at the time
instant k and Xen

k be the state associated to the measurement
Zenk , such that Zenk = g(Xen

k ) + ωk. g(·) is the function that
maps states into observations and ωk represents the noise of
the sensors. Similarly, en will also have measurements from all
the other ego-things in the network, which can be represented
as Ze1k , . . . , Z

en
k , . . . , ZeNk , n ∈ N, n 6= n, where N and N

are the number and the set of ego-things in the network,
respectively.

As explained in [26], [27], including time derivatives in
hidden object states allows dynamic probabilistic flow models
describing ego-thing states to be one to one related with
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: Ego-thing 2

Observations
: Ego-thing N

Preprocessing of 
observed data: 

Ego-thing 2

Preprocessing of 
observed data: 
Ego-thing N

Fig. 1: Block diagram: training phase and test phase

descriptors of motion laws coming from the mechanical statis-
tic, i.e.Lagrangian. Such flow models are represented in the
moving reference system of each ego-thing so allowing data
series to be described as relative not only to the estimated state
of the object but also to how such a state is instantaneously
changing. The generalized state of en by considering only
itself can be defined as:

Xen
k = [Xen

k Ẋen
k Ẍen

k · · · X
(L)en
k ]ᵀ, (1)

where (L) indexes the L-th time derivative of the state.
The l-th time derivative in en at the time k by considering

only itself can be approximated as:

X
(l)en
k =

X
(l−1)en
k −X(l−1)en

k−1

∆k
, (2)

where X(0)en
k = Xen

k and ∆k is the uniform sampling time
for all multisensory data.

The generalized state of en by considering all the ego-
things in the network can be written as:

Cen
k = [Xe1

k Xe2
k Xe3

k · · · X
eN
k ]ᵀ, (3)

2) Clustering by GNGs: When a data series is available, a
generative filter capable of generating other instances provided
of the same statistical properties as well as to predict future
states has to be learned. Generative filters here used are
hierarchical switching 2-Time Slice DBNs (2T-DBN) [28].
This generative filter, as shown in Fig. 2 is composed of hidden
states at continuous and discrete levels. Generalized states are
here used at the continuous level. Discrete hidden states are
hierarchically higher and represent switching variables. For
each value of such random variables, a different dynamic
model has to be learned at the continuous level capable of
predicting in a different way dynamics of states. This type of
DBNs is capable of representing non-linear dynamic models
by using a set of linear dynamic models. In order to learn
such DBNs, the vocabulary of switching variables and the
associated set of dynamic linear models must be learned
from data. To this end, having used generalized states is
particularly useful. In fact, a technique can be used as in
[25] that allows defining an initial basic generalized filter
[26] that operates on data series to produce an estimation
of the dynamic model that should be associated to each
state sparse point obtained by filtering the data sequence.
Such a technique consists of an initial filter based on a
single value switching variable; such a value corresponds to
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a unique dynamic model that assumes no state change should
be associated with values in the data series. When a data
series violates this assumption, obtained derivatives of state
correspond to errors with respect to such a hypothesis. Errors
can be clustered to define a set of state-dependent linear
dynamic models characterizing the state as varying according
to average derivatives and their covariances. Jointly clustering
in an unsupervised way states and errors allow one to obtain
a vocabulary of regions. Each region is characterized by a
compact part of the state space and by a compact subspace of
the derivative state space. The average state derivative in the
region subspace defines a different filter for each compact state
subspace. Here we used an unsupervised clustering approach,
the Growing Neural Gas (GNG) [29] method to obtain regions
from generalized errors produced as outputs by the initial filter,
i.e. sequences of coupled state estimations and errors. GNG
clusters correspond to coupled compact regions of state points
and errors. Derivative errors cluster encode the description
of the expected dynamics that caused the data series to
vary instead of following the hypothesis of the initial filter.
Different ways of changing are coded as behaviors that have
been found in a corresponding compact state region. Compact
state region represents switching variables in the hierarchical
DBN. GNG is not the unique possible clustering algorithm
that could have been employed. K-means clustering [30], Self
Organizing Map (SOM) [31], Neural Gas (NG) [32],etc are
other possible choices. In comparison to K-means and SOM,
NG converges faster and also it has other advantages. The
Growing Neural Gas (GNG) algorithm is an improved version
of the NG algorithm. In comparison to NG, it does not
need any dynamically modifiable parameters. The Growing
Neural Gas algorithm extends the Neural Gas algorithm by
adding a local error measure for each node. A second addition
here used, first proposed by [33], is the utility measure. By
considering all the aforementioned advantages, we chose to
use the GNG algorithm in this work.

The output of GNG consists of a set of clusters defined as
nodes. In the proposed approach a separate GNG clustering is
applied to states and derivatives obtained from the initial filter.
Each node groups a subset of samples of states or derivatives
that have a low distance with respect to the centre of mass
of the region associated with the node. Iterative presentation
of the same set of samples allows reorganization of nodes
averages until convergence is reached. Nodes produced by
GNG can be seen as a set of letters forming a vocabulary.
A different vocabulary is formed for GNGs working on state
and derivative samples produced by the initial filter. Nodes
associated with the GNG working on derivatives form a
vocabulary of dynamic linear models. The flow model of each
dynamic model is defined by the centre of mass of the error in
the respective node. On the other side nodes associated with
the GNG working on states defines a vocabulary of regions,
i.e. switching variables of the state space. The set of nodes
produced as output by GNG l, i.e. related to the l-th derivative
order, of the ego-thing en can be defined as:

V (l)en = {V (l)en
1 , V

(l)en
2 , . . . , V

(l)en

G(l)en}, (4)

where G(l)en is the set of nodes of the GNG l related to
ego-thing en’s l-th derivative of the state.
V

(l)en
n defines the node, and it is considered as a Gaussian

random variable whose mean value is the average of samples
and whose size corresponds to the variance of the samples
themselves. V (l)en can be seen as a vocabulary of order l
composed by the relative nodes. The switching variables at the
highest level of the DBN model learned by GNGs so computed
in Fig.2 is the switching variable. Such a variable assumes
values from the vocabulary learned by GNG working at the
state level l = 0. Each region can so be seen as a switching
variable: Each value of the variable indexes a region in the
continuous state space corresponding to a Gaussian having as
mean and covariance associated with the node. The dynamic
model associated with that region is found by identifying a
letter in the vocabulary of higher derivatives GNG nodes that
specifies the velocity and higher-order generalized coordinates
of a set of dynamic models that can be associated with the state
region.

The compact regions of the derivative state space form a
vocabulary composed of symbols associated with different
dynamics of generalized states Xen

k . In this work, generalized
states include only states and their first order derivatives
such as Xen

k = [Xen
k Ẋen

k ]ᵀ. A generic element (letter) of
the vocabulary describing clusters of state derivatives can be
associated with an equation of a dynamic model to be used
by a linear filter. Such a model can be written as

Xen
k+1 = AXen

k +BUk + wk (5)

where

A =

[
Ij 0j,j

0j,j 0j,j

]
; B =

[
0j,j
Ij∆k

]
variable j is related to the dimensionality of the state

vector for data under consideration. Ij is an identity matrix of
dimension j. 0j,j is a zero j×j matrix. wk ∼ N(0, σ), encodes
the noise produced by the system. Uk is a control vector that is
defined from the average derivative of states obtained by GNG
within a dynamic model region. The dynamic model to be
chosen is the one of the state regions to which Xen

k belongs. A
different dynamic model can be associated to different letters
describing the same state space region.

By combining letters of nodes produced by GNG working
on different derivatives, it is possible to obtain a set of words
which define discrete states combined with dynamic models,
so providing a semantic vocabulary whose elements combine
centroids of different derivative orders. Such words computed
at ego-thing en are defined as:

W en = {ϕen, ϕ̇en, . . . , ϕ(L)en}, (6)

where ϕen ∈ V (l)en. W en contains all possible com-
binations of switching variables and dynamic models. The
switching variable acts as a variable at a higher hierarchical
level that explains the states from a semantic viewpoint. The
discrete switching variables (i.e., letters and words) of the
learned DBN model shown in the pink shaded area in Fig.
2.



7

3) Estimation of state transition: The vocabularies are
learned by applying initial filters and GNG clustering to
each ego-thing en sensory data acquired along a cooperative
task performed with other ego-things. For example, in
scenario 1 (refer section IV) a cooperative driving task of
two autonomous cars is considered. In order to allow each
ego-thing to develop models that consider time evolution not
only at continuous level but also as probabilistic transitions
among words in the learned vocabularies, timestamps are
assumed to be provided to data series and transition models
to be used at the discrete level of DBNs are estimated.
Such transition models allow switching variables to be
predicted probabilistically at each moment by the DBN.
Moreover, as the DBNs estimate at each time, a joint
posterior probability over switching models and continuous
states, the predictions provided by the transition model can
be used as a source to obtain a further measurement of
semantic abnormality. In particular, if predicted words do
not match with evidence supported by observations of one
agent, then such an agent can occur in a semantic abnormality.

The probabilistic transition matrix has been estimated from
the data sequence by considering the transitions in time
and such a matrix can tell the mapping of the variables in
discrete space (i.e., word space). In other words, it can tell the
probability of transition from word W en

k at time instance k
to the word W en

k+1 in next time instance k + 1 shown in Fig.
2. We use this information for the prediction purpose at the
word level.

4) DBN model for all the agents: All the previous steps
are the step by step learning process of the switching DBN
models. Each ego-thing learns a total number of N switching
DBN models in order to predict the future states of each entity
in continuous as well as discrete levels. The set of DBNs
learned by each ego-thing ei and ej is the same for each other
ego-thing in the network, and can be written as:

DBNei = {DBNe1, · · · , DBNeN} = DBNej , ∀i, j ∈ N (7)

The number of DBNs learned can be represented as shown
in Fig.2. In each DBN, there are three levels such as measure-
ments, continuous and discrete levels. The arrows and links
(coloured in black) of such DBN are learned based on the
Scenario 1 task (see section IV). Moreover, the red and blue
dotted arrows represent the influence of one ego-thing's action
to the future states of the other ego-things in the network.
These dotted arrows represent how one ego-things action can
be influenced by the future actions of the other ego-things in
the network and vice versa.

B. Online testing

In Fig. 1, the second part (shaded in blue) shows the
block diagram representation of the online test phase. In this
phase, we have proposed to apply a dynamic switching model
called Markov Jump Particle Filter (MJPF) [34], [35] to make
inferences on the DBN models learned in the training phase
as shown in Fig. 2. MJPF is a Bayesian filter with a Kalman

Filter (KF) is associated with each particle. In MJPF we use
Kalman Filter (KF) [36] in state space (grey shaded area) and
Particle Filter (PF) [37] in a higher hierarchical level called
word level (pink shaded area) in Fig. 2. The blue and red
arrows in Fig. 2 depict the information exchange between two
ego-things, and, as a consequence, two DBN models. Those
arrows tell how the future states of one ego-thing can influence
the next states of the other one.

1) Estimation of future states: The MJPF is able to predict
and estimate discrete and continuous states of the ego-things.
In addition to that, it produces another information i.e abnor-
mality measurements.
The data sequence (experience) never seen in the online
training step is pre-processed and given as input to the MJPF
applied on learned DBN models. The output of each MJPF is
the estimation of future states of the associated ego-thing along
with the probabilistic and spatial abnormality measurements.

MJPF uses PF for discrete variables, here corresponding
to word variables; each particle used to approximate the joint
posterior in MJPF is augmented with an associated continuous
random variable characterized by a Gaussian probability. In
our case the dynamic model describing changes of the contin-
uous variable associated to a given word value is represented
as in Eq. 5, while transition model is used as dynamic model at
word level In the prediction step of the MJPF, a SIR [38] PF
approach is used to predict new candidate particles at next
step using transition model at discrete level. Each particle
is enriched also of a Gaussian prediction of the continuous
associated variable. This is done as in Kalman Filter, being
dynamic models and observation models linear and variables
Gaussian. Each predicted particle is so characterized as a
word of given value with an associated prior probability at
the continuous level. In the update step, the ground truth
observations (belonging to each ego-thing) are used to first
update the prior at continuous level, so obtaining the new
posterior, and then providing a new weight to the particle
word, based on the evidence that such a posterior provides to
the specific word itself. In our approach these traditional MJPF
are enriched by the computation of abnormality measurements
as described in the next section, to allow agents to be aware of
the fitness of their dynamic models to the observed sequences.

The posterior probability density function of MJPF belongs
to ego-thing en can be written as:

p(Wk
en,Xk

en/Zk
en) = p(Xk

en/Wk
en, Zk

en)p(Wk
en/Zk

en)
(8)

where Wk
en is the word in the higher hierarchical level

and Xk
en is the continuous state in the state space belongs

to ego-thing en at time instant k.
As stated above, a different Kalman Filter is associated with
each particle Wk

∗ and is different for each discrete zone
(cluster). The Eq. 8 shows the link between the discrete state
(i.e. words) and continuous state estimation. The KF associated
to particle Wk

∗ is used to estimate the prediction on the
continuous state Xk

en and to estimate p(Xk
en/Wk

en, Zk
en).

As explained before, each ego-thing has its own switching
model as well as the model of other ego-things. At each



8

instant, the ego-thing predicts its own future states and future
states of the other ego-things by the learned switching DBN
models. By receiving the ground truth observations, the ego-
thing can match with the predicted states and detect if any
anomalies present. The observations from other ego-things
can be received through the established wireless channel with
a certain delay and loss. By making efficient communica-
tion between the ego-things, we can develop the collective
awareness in the entire network of ego-things. Such collective
awareness can tell if any abnormal situations happen anywhere
in the network. Moreover, the collective DBN models can
handle the uncertainty of the environment and the variability
of observations.

2) Abnormality detection: Posterior probability estimation
in MJPF is here enriched with computation of an additional
information useful for self-awareness of individual ego-things.
i.e., abnormality measurements. Such information is estimated
to instantaneously allow each ego-thing to measure how well
the learned models fit the currently observed sequence. To
estimate the abnormality of a sequence, a statistical distance
metric is here proposed that estimates the distance between
predictions performed within MJPF at discrete and continuous
levels and the sensory observations produced along an ego-
thing experience. In this work, Hellinger Distance (HD) [39]
is proposed as the metric to evaluate sequence abnormality.

Some important statistical distances include Bhattacharya
distance [40], Hellinger distance [39], Total variation distance
[41], etc. The Bhattacharyya distance measures the similarity
of two probability distributions. It is closely related to the
Bhattacharyya coefficient, which is a measure of the amount
of overlap between two statistical samples or populations.
Similarly, the Hellinger distance (closely related to, although
different from, the Bhattacharyya distance) is used to quan-
tify the similarity between two probability distributions. The
Hellinger distance is defined between vectors having only
positive or zero elements [42]. The datasets in this work
are normalized, so the values vary between zero and one;
there aren’t any negative values. For this reason, Hellinger
distance is more appropriate than using other distance metrics
as an abnormality measure. The works in [35] and [43] used
Hellinger distance as an abnormality measurement.

In this work, Hellinger distance is used as an abnormality
measurement between predicted generalized states and obser-
vation evidence.

The Hellinger distance related to the Ego-thing en can be
written as:

θenk =
√

1− λenk , (9)

where λenk is defined as the Bhattacharyya coefficient [44],
such that:

λenk =

∫ √
p(Xen

k |X
en
k−1)p(Zenk |X

en
k ) dXen

k . (10)

The variable θmk ∈ [0, 1], where values close to 0 indicate
that ground truth observations match with predictions; whereas
values close to 1 show the presence of an abnormality.

Once detected abnormal situations, the ego-thing has to take
appropriate actions either by stopping itself or reducing the
speed, etc. However, the decision making part is not included
in this work.

C. Evaluating the model performance after the packet loss

Each ego-thing has its own model for prediction of the
future states and the ground truth observations received from
the sensors to check whether if any anomalies present in the
environment around it. At the same time, the models for other
ego-things can predict the future states and receive ground
truth observations from the corresponding ego-things with a
certain delay and loss in transmission. The DBN model of
each agent is updated sequentially (with a certain delay) using
the shared information. The delay and the loss depend on
various factors such as the distance between the ego-things,
the employed communication protocol, modulation scheme,
and frequency, scenario conditions (urban, rural, ...), etc.

To check the model performance in predicting abnormal
situations the true positive rate (TPR) and false positive rate
(FPR) are calculated to build a set of Receiver Operating
Characteristic (ROC) curves [45] corresponds to different K
factor values [46]. The ROC curves plot TPR and FPR at
different thresholds, where:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
(11)

The true positive (TP ) is defined as the number of times
where abnormalities are correctly identified. False negative
(FN ) consists of the times that abnormalities are classified
incorrectly. Accordingly, false positive (FP ) are the times
where anomalies are wrongly assigned to normal samples, and
true negative (TN ) represents the times where normal samples
are correctly identified. In this work, mainly considered two
parameters of ROC for measuring the performance of the
model before and after the transmission loss are: (i) the area
under the curve (AUC) of the ROC curves, which quantifies
the performance of the DBNs’ abnormal detection at several
thresholds; (ii) the accuracy (ACC) measurement, which is
defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (12)

1) Communications among ego-things: In the training
phase, we assumed that each ego-thing has available all
the required data describing all the other ego-things’ status.
However, in a real scenario, data exchange among ego-things
through a wireless mean has to be considered. Different
variables affect communication performance over time. They
are mainly related to:

• objects’ movement, such as object’s velocity, accelera-
tion, and moving direction;

• environment where the objects are located, such as urban
or rural scenario, presence of obstacles, Line of Sight
(LoS) or Non-LoS (NLoS) conditions;
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Fig. 2: Collective Dynamic Bayesian Network (CDBN) model

• chosen communication parameters, such as employed
communication protocol and modulation, exploited fre-
quency band, achievable data rate, transmission power,
and received signal strength.

The channel among ego-things has to be properly modelled
in order to consider all the effects which can affect the ob-
tained performance, such as scattering, diffraction, reflection,
shadowing, and fading.

The effects on the wireless channel are addressed by large
scale and small scale channel models. Large scale models
cover effects such as path loss and the effects of the propaga-
tion environment over large distances. Small scale models, on
the contrary, describe the behaviour in the time domain, taking
into account the fast fading effects, i.e. multipath propagation.
Large and small scale models are combined to realistically
shape channel behaviours. Received power Pr is composed of
the transmit power Pt, the large scale effects, i.e. path loss
PL, and the small scale effects ζ:

Pr = PtPLζ (13)

The path loss is the radio attenuation due to the commu-
nication mean. It is mainly affected by the communication
frequency f and the distance d between source and destination.
It can be computed as:

PL =

(
λ2

(4π)2dα

)
GRGT (14)

where λ = 2πf , α is the attenuation factor, GR and GT are
the reception and transmission antenna gains, respectively.

The presence of objects and obstacles in the environment
originates multiple copies of each transmitted signal, which
can strengthen (if ζ > 1) or weaken (if ζ < 1) the original
signal. This effect is called multipath fading and can be
modelled as a Rayleigh, Rician, or Nakagami distribution.

Considering the current state-of-the-art, we focus on a
Rician channel model based on a Rice distribution when LoS
is present. Rice distribution can be expressed with parameters
K and Pr, which are the Rician K factor and the received
power, respectively, or as a function of ρ and σ, which are
field strength of the LoS component and the field strength of
scattered components, respectively.

The Rice distribution is:

pZ(z) =
z

σ2
exp

(
−z2 − ρ2

2σ2

)
I0

(
zρ

σ2

)
(15)

where z ≥ 0, ρ and σ are the signal strength of the dominant
and of the scattered paths, respectively. Therefore, ρ2 and
2σ2 are the average power of the LoS and NLoS multipath
components, respectively. As the direct wave weakens, the
Rice distribution becomes Rayleigh.

Rician K factor is defined as :

K =
ρ2

2σ2
0

(16)

It expresses the ratio between the dominant component to
scattered waves. The stronger the line of sight component, the
greater the K factor. In this way, the Rice distribution in eq.
(15) can be expressed in terms of linear K factor as:
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pZ(z) =
2z(K + 1)

Pr
exp

(
−K − (K + 1)z2

Pr

)
·

· I0

(
2z

√
K(K + 1)

Pr

) (17)

where I0 is the modified Bessel function of first kind and
zero order [47]. When K →∞, the Rice distribution tends to
a Gaussian one, and when K → 0, i.e. in case no dominant
direct path exists (ρ = 0), the Rician fading reduces to a
Rayleigh fading defined by:

pZ(z) =
z

σ2
exp(− z2

2σ2
) (18)

A more general fading distribution was developed whose
parameters can be adjusted to fit empirical measurements. This
distribution is called the Nakagami and is given by:

pZ(z) =
2mmx2m−1

Γ(m)Pmr
exp(

−mz2

Pr
) (19)

The Nakagami distribution is parametrized by Pr and the
fading parameter m. For m = 1 it becomes Rayleigh fading,

instead for m =
(K + 1)2

2K + 1
the distribution is approximately

Rician with parameter K.

IV. EXPERIMENTAL SET UP

The scenario considered to validate the proposed method-
ology consists of two intelligent vehicles called iCab (In-
telligent Campus Automobile), shown in Fig. 3b, with the
capabilities of autonomous driving [48]. The vehicles are
equipped with different sensors such as one lidar, a stereo
camera, and encoders. Information about the control of the
vehicles, i.e. steering angle (s) and power (p), along with the
odometry data (x and y positions) are the data exchanged
during the operative process. After collecting the data sets,
a synchronization operation is performed in order to perfectly
synchronize the collected data sets. The two vehicles follow
the same movement trace, shown in Fig. 3a, keeping their
position one after the other. For this reason, the iCab1 vehicle
is called leader and the iCab2 vehicle is called follower. The
dimension of the movement trace in the testing environment
is 38mX33m.

(a) Testing environment (b) iCab platforms

Fig. 3: The vehicles and the environment used for the experi-
ments.

To test the anomaly detection model, we used the data sets
from the vehicles while they perform two different actions in
the same test environment. The scenarios are:

• Scenario I Perimeter monitoring: iCab vehicles perform
platooning operation in a closed environment, as shown in
Fig. 6. In total, four laps (i.e., the platooning operation has
been performed four times one after the other) has been
performed and collected the data. The follower vehicle
mimics the actions of the leader vehicle. This is the
scenario used in the training phase to learn the switching
DBN models.

• Scenario II Emergency stop: while both vehicles are
moving along the rectangular trajectory of the perimeter
monitoring task, a pedestrian suddenly crosses in front
of the leader vehicle. As soon as the leader detects the
presence of the pedestrian, the vehicle automatically ex-
ecutes an emergency brake and waits until the pedestrian
crosses and then continues the task. At the same time, the
follower detects the anomaly in the state of the leader and
it also performs a stop operation until the leader starts its
movement again. The datasets from this scenario have
been used to test the switching DBN models learned
in the training phase. We have used about 30% of the
datasets to test the learned DBN models.
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Fig. 4: Position data for perimeter monitoring task

Fig. 4 plots the one lap (from the four laps) odometry (x
and y positions) data for the perimeter monitoring task. Fig.5
shows the steering angle w.r.t the vehicle’s position (Fig. 5a)
and the rotor power w.r.t the vehicle’s position (Fig. 5b). For
simplicity, in Fig 5, plotted only the data from one lap (i.e.,
about 800 data points).

To test the reliability and quantify the expected delay of
the data exchange between the two vehicles, we have used
the ONE simulator [49]. It is a network simulator designed
for testing communications among moving objects. Moreover,
we have analyzed how the packet loss and delay affect the
proposed learned DBN models for abnormality detection.

Considering the current state-of-the-art, the IEEE 802.11p
protocol is one of the most feasible and widely considered
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(a) Steering angle w.r.t position (b) Power w.r.t position

Fig. 5: Control variables plotted w.r.t position

Fig. 6: Scenarios considered for the anomaly detection test

in the inter-vehicles communication scenario, especially in
autonomous vehicle networks [50].

A new interface has been created in the ONE simulator in
order to be able to model the inter-vehicle channel as a Rician
channel and to set different values for its parameters, including
transmitted power, central frequency, and Rician K factor.

We assumed that the data to be communicated between the
ego-things are: XY position, steering angle (s), and power (p)
of the rotor of the iCab vehicles together with a time stamp.
In this way, we assume that the amount of data to be sent
is 4 Bytes for the position + 2 Bytes for the steering angle
+ 2 Bytes for the rotor power + 4 Bytes for the time stamp.
The total data payload size is 12 Bytes. Assuming UDP, IP,
and IEEE 802.11p as transport, network, and data link layer
protocols, respectively, the overall size of each data packet is
12 + 8 + 20 + 28 + 6 = 74 Bytes.

V. RESULTS

Results of offline learning of DBN models are here not
described in all their steps but just providing some general
overview. Then, the application of models learned in the
online test phase is described in more detail to highlight their
application to the agents of the ego-thing network.

A. Offline training phase

In order to collect training and test data sets, the vehicles
performed platooning operation four times one after another.
The size of each data sequence is about 3200 (i.e. 800
samples per each). The null force filter [25] with a single
switching variable corresponds to a unique dynamic model
that assumes no state change produces error sequence when the
data sequence violates from this rule. The DBN model in the
discrete level (i.e. word level) has been learned separately for
each ego-thing while they were doing the same co-operative
task. The initial filter [25] has been applied to all the agents in
the network. The error sequence produced by this initial filter
has been clustered to define state-dependent linear dynamic
models characterizing the state as varying according to average
derivatives and their covariance.

The total number of clusters (nodes) obtained by clustering
the states and errors (obtained from the initial filter) were
35 for state space and also 35 clusters for state derivatives
with corresponding dynamic models. The GNG reached con-
vergence in this number. Each node cluster corresponds to a
letter with respect to respective vocabularies, and the word
list has been composed by the different possible combinations
of letters from state and state derivative vocabularies (i.e.
switching variables and related dynamic models). Then a
unique label is given to each letter combinations, and at last,
442 such unique combinations of letters (i.e. words) were kept.
A transition matrix at the discrete level was then estimated
for each agent whose size was 442X442. This information
constitutes the DBN model of the MJPF filter to be applied
to each agent.
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B. Online test phase

In the online test phase, the data set of scenario II, i.e.
emergency stop (refer Sec. IV), has been employed to check
the prediction capability of switching DBN models learned
in the training phase and to detect the presence of abnormal
situations in the environment. The model was able to detect
the abnormality situation due to the emergency brake obtaining
high values of the Hellinger distance metric, as shown by the
red part in Fig. 7 (iCab1 - leader) and 8 (iCab2 - follower).

As can be seen in both figures, there is a significant rise
in the Hellinger distance abnormality measures during the
abnormality intervals. However, the abnormality peak of the
follower vehicle is not as high as the leader’s one. The main
reason is that after the emergency stop of the leader, the
follower gradually decreased its speed rather than doing an
emergency brake. We set the abnormality threshold to 0.4
(indicated by the blue dotted line in Fig. 7 and 8) considering
the average Hellinger distance value of 0.2 when vehicles
operate in normal conditions.

As described before, both vehicles have their own DBN
model as well as the model for other vehicles. We have shown
here the performance of the DBN model for the leader vehicle
in the leader itself and the follower by plotting ROC curves
and comparing AUC and ACC parameters. The model for the
leader in the follower vehicle can predict the future states
of the leader vehicle and detect if any abnormal situations
present in the environment around the leader vehicle. Once
the follower vehicle detects the abnormal situation of the
leader, it should adapt its own behaviour by changing its
future action by appropriate decisions. It should be pointed
out that in this work the focus is on abnormality detection
as a basic step of collective awareness, while the impact on
such additional information on decision making and online
learning of new actions is beyond the scope of this paper.
The important factor that needs to be considered here is
the effect of the communication channel over the transmitted
data between the vehicles. Such transmission loss causes the
performance degradation of the DBN model and consequently
the abnormality detection capability as well.

The DBN model for the leader vehicle inside the follower
vehicle estimates the abnormality situation of the leader after
receiving real-time observed data (i.e. steering angle and
power) from the leader over the wireless channel. Due to
the impact of the communication channel over the transmitted
data, the DBN model performance decreases, and we have
investigated how it affects the capability of detecting abnormal
situations. The performance measure we used in this work
is ROC curve parameters such as AUC and ACC. The main
factors that affect the transmission loss are the data rate
of different modulation schemes, the distance between the
vehicles, and the Rician K-factor.

The IEEE 802.11p standard operates at 5.9 GHz central
frequency, offers 10 MHz bandwidth, and allows sending data
with different modulations and data rates range from 3 to
27 Mbps [51]. We have fixed a maximum communication
range to 100 m, considering that the data loss is considerable
and beyond a possible realistic reliability requirement if the

distance is higher. We performed different tests changing the
values of data rate, modulation, and K-factor as shown in
Table I. High K-factor values refer to rural scenarios where
the presence of obstacles, buildings, etc. has a lower impact
on the achieved performance. The sensitivity column shows
the minimum values of the Signal-to-Noise Ratio (SNR) at
the receiver to guarantee successful data reception [52].

TABLE I: Simulation parameters [52]

Data rate (Mbits/sec) Modulation Sensitivity (dBm) K factor

3 BPSK -85 0,1.8,2.6,3
9 QPSK -80 0,1.8,2.6,3
18 16QAM -73 0,1.8,2.6,3
27 64QAM -68 0,1.8,2.6,3

The DBN model performance in terms of ROC curve has
been plotted for the leader vehicle for data rates 18 Mbps in
Fig. 9 and 27 Mbps in Fig. 10, respectively. These figures show
the reliability of the communications in different scenarios,
from completely rural (K = 3) to urban (K = 0). The
blue curve refers to the case without transmission among ego-
things, i.e. the ideal case of complete knowledge, and has been
inserted as a comparison.

When the data rate is 18Mbps, our learned DBN model
performance is not degrading much as compared to the no
transmission loss case, the performance is in the acceptable
range and the model well predicts the abnormal situations. The
performance degradation (in terms of AUC) and the accuracy
in prediction (in terms of ACC) for 18 Mbps and 27 Mbps data
rates are summarized in Tables II and III, respectively. When
the environment changes from rural to suburban to urban, the
performance of the model again degrades. Finally, when in
case of no line of sight component (LOS) (K = 3) the value
of AUC and ACC in the ROC curve further reduced.

TABLE II: ROC features: Data rate = 18Mbps

K-factor Area under the curve(AUC) Accuracy(ACC)

No loss 0.9039 0.9826
3 0.86665 0.9814

2.6 0.8444 0.9814
1.8 0.7788 0.9764
0 0.7059 0.9764

TABLE III: ROC features: Data rate = 27Mbps

K-factor Area under the curve(AUC) Accuracy(ACC)

No loss 0.9039 0.9826
3 0.8653 0.9801

2.6 0.8409 0.9777
1.8 0.7743 0.9764
0 0.6994 0.9764

Moreover, the distance between the vehicles plays a role in
packet losses. To analyze the relationship between distance,
delay, and data packet loss, we focused on Scenario I but
changing the velocity trace of the follower, in order to let the
distance among them change during the simulation.

Fig. 12 and 11 show how the distance between the two
vehicles and the communication delay between them change



13

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1 Control SP iCab1

Fig. 7: Abnormality measurements plot for iCab 1
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Fig. 8: Abnormality measurements plot for iCab 2

Fig. 9: Receiver Operating Curve (18 Mbps)

over time, respectively, while the received SNR (blue plot)
and the data packet losses (green dots) are shown in Fig. 13.
It is evident from the figures that when the distance increases
the packet loss also increases. Fig. 13 also shows the power
in free space (red line) and sensitivity threshold (light blue
line) of the power corresponds to the data rates we considered
and finally the lost packets as it did not satisfy the threshold
limit of the minimum received power. The overall amount of
packets lost is shown in Table IV.

Considering the shown results, different considerations can
be pointed out about which data ego-things should exchange to
increase the reliability of the described system. For example,
if the current distance between vehicles allows obtaining a
packet loss ratio below a certain threshold, the vehicles can
decide to communicate the ground truth observations to the
other vehicles in the network to better detect if there are any

Fig. 10: Receiver Operating Curve (27 Mbps)

TABLE IV: Packet loss ratio for different K values and
different data rates

K-factor Packet loss ratio (18 Mbps) Packet loss ratio (27 Mbps)

3 0.0025 0.0037
2.6 0.0037 0.0074
1.8 0.0099 0.0160
0 0.0310 0.0410

abnormalities in the environment. Otherwise, if the vehicle
approaches the border of the transmission range or the distance
between them exceed a certain threshold, it would be more
appropriate to communicate only the abnormality measure-
ments as soon as it detected rather than communicating all
the ground truth observations. The transmission loss is directly
proportional to the distance, such that if we transmit more data
the loss also increases. To reduce the impact of false alarm or
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Fig. 11: Delay vs time

Fig. 12: Distance vs time

Fig. 13: Received power and packet losses

missed detection in sensing the abnormal situation, in such
situations (higher distances), communicate only abnormality
measurements could be more appropriate to give an indication
to other ego-things in the network. Although in small distances
it is recommended to exchange the observed data itself to
detect abnormalities with an acceptable delay.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a method to develop a collective
awareness (CA) model and to recognize abnormal situations
in smart object networks. Each entity learns a collective
awareness model (i.e., a set of Dynamic Bayesian Network
(DBN) models) describing the normal behaviour of itself
and all the other entities in the network. The considered
abnormality metric is based on the Hellinger distance between
the predicted states by the learned DBN models and the real-
time ground truth observations. A Markov Jump Particle Filter
(MJPF) is employed to infer the future states of the entities.
The abnormality metric values calculated in each of the DBN
models suggest that our method provides good performance in
detecting the environmental abnormalities. Moreover, informa-

tion exchange among entities has been considered in order to
enhance the proposed strategy.

The considered test scenario is composed of two smart
vehicles, one (the follower) following the other (the leader),
which move along a predefined track. Communication per-
formance has been collected in order to verify the reliability
of the data exchange, quantify the expected performance in
terms of delay and loss and consider how these performances
could affect the abnormality detection process. We investigated
the DBN model performance in the case where each object
communicates the ground truth observations to the other
entities in the network. To compare the performance with
different parameters of the considered channel model (Rician
model), such as K-factor, distance, and data rates, we have
plotted ROC curves and calculated reliability (Area Under the
Curve - AUC) and accuracy (ACC) metrics.

In the future, this work can be extended by learning new
DBN models whenever the entities pass through the new
experiences. Another direction could be optimizing the model
in a way that the same model could be used for all the
objects in the network only by changing specific parameters.
Moreover, the design of a decision making module capable
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to use abnormality situations with respect to available DBN
models in order to adapt its own actions in unknown scenarios
(by considering different test scenarios) is a topic of future
directions of the research.
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