1,148 research outputs found

    Strengthening America's Best Idea: An Independent Review of the National Park Service's Natural Resource Stewardship and Science Directorate

    Get PDF
    NRSS requested that an independent panel of the National Academy conduct a review of its effectiveness in five core functions, its relationships with key internal stakeholders, and its performance measurement system. Among other things, the National Park Service's Natural Resource Stewardship and Science Directorate (NRSS) is responsible for providing usable natural and social science information throughout the National Park Service (NPS). NRSS leadership requested this review of the directorate's performance on five core functions, its relationships with key internal NPS stakeholders, and its performance measurement system.Main FindingsThe panel determined that NRSS is a highly regarded organization that provides independent, credible scientific expertise and technical information. The panel also found that NRSS and NPS have additional opportunities to advance natural resource stewardship throughout the Service. If implemented, the panel's eight major recommendations will: (1) help the Service respond to the parks' environmental challenges while raising public awareness about the condition of these special places; (2) strengthen NRSS as an organization; (3) promote scientifically based decision-making at the national, regional, and park levels; and (4) improve the existing performance measurement system

    Extensions of Effective Medium Theory of Transport in Disordered Systems

    Get PDF
    Effective medium theory of transport in disordered systems, whose basis is the replacement of spatial disorder by temporal memory, is extended in several practical directions. Restricting attention to a 1-dimensional system with bond disorder for specificity, a transformation procedure is developed to deduce, from given distribution functions characterizing the system disorder, explicit expressions for the memory functions. It is shown how to use the memory functions in the Lapace domain forms in which they first appear, and in the time domain forms which are obtained via numerical inversion algorithms, to address time evolution of the system beyond the asymptotic domain of large times normally treated. An analytic but approximate procedure is provided to obtain the memories, in addition to the inversion algorithm. Good agreement of effective medium theory predictions with numerically computed exact results is found for all time ranges for the distributions used except near the percolation limit as expected. The use of ensemble averages is studied for normal as well as correlation observables. The effect of size on effective mediumtheory is explored and it is shown that, even in the asymptotic limit, finite size corrections develop to the well known harmonic mean prescription for finding the effective rate. A percolation threshold is shown to arise even in 1-d for finite (but not infinite) systems at a concentration of broken bonds related to the system size. Spatially long range transfer rates are shown to emerge naturally as a consequence of the replacement of spatial disorder by temporal memories, in spite of the fact that the original rates possess nearest neighbor character. Pausing time distributions in continuous time random walks corresponding to the effective medium memories are calculated.Comment: 15 pages, 11 figure

    Effects of disorder in location and size of fence barriers on molecular motion in cell membranes

    Full text link
    The effect of disorder in the energetic heights and in the physical locations of fence barriers encountered by transmembrane molecules such as proteins and lipids in their motion in cell membranes is studied theoretically. The investigation takes as its starting point a recent analysis of a periodic system with constant distances between barriers and constant values of barrier heights, and employs effective medium theory to treat the disorder. The calculations make possible, in principle, the extraction of confinement parameters such as mean compartment sizes and mean intercompartmental transition rates from experimentally reported published observations. The analysis should be helpful both as an unusual application of effective medium theory and as an investigation of observed molecular movements in cell membranes.Comment: 9 pages, 5 figure

    Gated nonlinear transport in organic polymer field effect transistors

    Full text link
    We measure hole transport in poly(3-hexylthiophene) field effect transistors with channel lengths from 3 μ\mum down to 200 nm, from room temperature down to 10 K. Near room temperature effective mobilities inferred from linear regime transconductance are strongly dependent on temperature, gate voltage, and source-drain voltage. As TT is reduced below 200 K and at high source-drain bias, we find transport becomes highly nonlinear and is very strongly modulated by the gate. We consider whether this nonlinear transport is contact limited or a bulk process by examining the length dependence of linear conduction to extract contact and channel contributions to the source-drain resistance. The results indicate that these devices are bulk-limited at room temperature, and remain so as the temperature is lowered. The nonlinear conduction is consistent with a model of Poole-Frenkel-like hopping mechanism in the space-charge limited current regime. Further analysis within this model reveals consistency with a strongly energy dependent density of (localized) valence band states, and a crossover from thermally activated to nonthermal hopping below 30 K.Comment: 22 pages, 7 figures, accepted to J. Appl. Phy

    Traversal Times for Random Walks on Small-World Networks

    Get PDF
    We study the mean traversal time for a class of random walks on Newman-Watts small-world networks, in which steps around the edge of the network occur with a transition rate F that is different from the rate f for steps across small-world connections. When f >> F, the mean time to traverse the network exhibits a transition associated with percolation of the random graph (i.e., small-world) part of the network, and a collapse of the data onto a universal curve. This transition was not observed in earlier studies in which equal transition rates were assumed for all allowed steps. We develop a simple self-consistent effective medium theory and show that it gives a quantitatively correct description of the traversal time in all parameter regimes except the immediate neighborhood of the transition, as is characteristic of most effective medium theories.Comment: 9 pages, 5 figure

    Understanding and utilization of Thematic Mapper and other remotely sensed data for vegetation monitoring

    Get PDF
    The TM Tasseled Cap transformation, which provides both a 50% reduction in data volume with little or no loss of important information and spectral features with direct physical association, is presented and discussed. Using both simulated and actual TM data, some important characteristics of vegetation and soils in this feature space are described, as are the effects of solar elevation angle and atmospheric haze. A preliminary spectral haze diagnostic feature, based on only simulated data, is also examined. The characteristics of the TM thermal band are discussed, as is a demonstration of the use of TM data in energy balance studies. Some characteristics of AVHRR data are described, as are the sensitivities to scene content of several LANDSAT-MSS preprocessing techniques

    Static Pairwise Annihilation in Complex Networks

    Get PDF
    We study static annihilation on complex networks, in which pairs of connected particles annihilate at a constant rate during time. Through a mean-field formalism, we compute the temporal evolution of the distribution of surviving sites with an arbitrary number of connections. This general formalism, which is exact for disordered networks, is applied to Kronecker, Erd\"os-R\'enyi (i.e. Poisson) and scale-free networks. We compare our theoretical results with extensive numerical simulations obtaining excellent agreement. Although the mean-field approach applies in an exact way neither to ordered lattices nor to small-world networks, it qualitatively describes the annihilation dynamics in such structures. Our results indicate that the higher the connectivity of a given network element, the faster it annihilates. This fact has dramatic consequences in scale-free networks, for which, once the ``hubs'' have been annihilated, the network disintegrates and only isolated sites are left.Comment: 7 Figures, 10 page

    The role of the lateral prefrontal cortex and anterior cingulate in stimulus–response association reversals

    Get PDF
    Many complex tasks require us to flexibly switch between behavioral rules, associations, and strategies. The prefrontal cerebral cortex is thought to be critical to the performance of such behaviors, although the relative contribution of different components of this structure and associated subcortical regions are not fully understood. We used functional magnetic resonance imaging to measure brain activity during a simple task which required repeated reversals of a rule linking a colored cue and a left/right motor response. Each trial comprised three discrete events separated by variable delay periods. A colored cue instructed which response was to be executed, followed by a go signal which told the subject to execute the response and a feedback instruction which indicated whether to ‘‘hold’’ or ‘‘f lip’’ the rule linking the colored cue and response. The design allowed us to determine which brain regions were recruited by the specific demands of preparing a rule contingent motor response, executing such a response, evaluating the significance of the feedback, and reconfiguring stimulus–response (SR) associations. The results indicate that an increase in neural activity occurs within the anterior cingulate gyrus under conditions in which SR associations are labile. In contrast, lateral frontal regions are activated by unlikely/unexpected perceptual events regardless of their significance for behavior. A network of subcortical structures, including the mediodorsal nucleus of the thalamus and striatum were the only regions showing activity that was exclusively correlated with the neurocognitive demands of reversing SR associations. We conclude that lateral frontal regions act to evaluate the behavioral significance of perceptual events, whereas medial frontal–thalamic circuits are involved in monitoring and reconfiguring SR associations when necessary

    Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 5 (2014): 543, doi:10.3389/fmicb.2014.00543.Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.This work is a contribution of the Center for Microbial Oceanography: Research and Education (C-MORE) and was made possible by generous support from the National Science Foundation (1151698 to Frank J. Stewart and EF0424599 to Edward F. DeLong), the Alfred P. Sloan Foundation (Frank Stewart), the Gordon and Betty Moore Foundation (Edward F. DeLong), and the Agouron Institute (Edward F. DeLong). Edgcomb's involvement was supported by contributions from the Woods Hole Oceanographic Institution Director of Research and Ocean Life Institute
    corecore