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Extensions of effective-medium theory of transport in disordered systems
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2Department of Physics, Missouri University of Science & Technology, Rolla, Missouri 65409, USA
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The effective-medium theory of transport in disordered systems, whose basis is the replacement of spatial
disorder by temporal memory, is extended in several practical directions. Restricting attention to a one-
dimensional system with bond disorder for specificity, a transformation procedure is developed to deduce
explicit expressions for the memory functions from given distribution functions characterizing the system
disorder. It is shown how to use the memory functions in the Laplace domain forms in which they first appear,
and in the time domain forms which are obtained via numerical inversion algorithms, to address time evolution
of the system beyond the asymptotic domain of large times normally treated. An analytic but approximate
procedure is provided to obtain the memories, in addition to the inversion algorithm. Good agreement of
effective-medium theory predictions with numerically computed exact results is found for all time ranges for
the distributions used except near the percolation limit, as expected. The use of ensemble averages is studied
for normal as well as correlation observables. The effect of size on effective-medium theory is explored and it
is shown that, even in the asymptotic limit, finite-size corrections develop to the well-known harmonic mean
prescription for finding the effective rate. A percolation threshold is shown to arise even in one dimension for
finite �but not infinite� systems at a concentration of broken bonds related to the system size. Spatially
long-range transfer rates are shown to emerge naturally as a consequence of the replacement of spatial disorder
by temporal memories, in spite of the fact that the original rates possess nearest neighbor character. Pausing
time distributions in continuous-time random walks corresponding to the effective-medium memories are
calculated.

DOI: 10.1103/PhysRevE.79.011114 PACS number�s�: 05.60.Cd, 61.43.�j, 72.80.Ng

I. MOTIVATION FOR THE STUDY

Description of the movement of excitations and quasipar-
ticles is crucial to the study of a variety of disciplines in
physics and allied sciences �1�. Conductivity in metals and
semiconductors, energy transport in molecular aggregates,
atomic motion in ceramic materials, molecular hopping in
cell membranes, all present a diverse variety of contexts in
which such a description is indispensable. At a sufficiently
macroscopic level, the description is often provided �2� by a
master equation of the type

dPm�t�
dt

= �
n

FmnPn�t� − FnmPm�t� , �1�

which governs the evolution of the probabilities Pm�t� of
occupation of site m by the moving entity at time t via the
transition rates Fmn. Here m is typically a vector index in the
appropriately dimensioned space. The method of solution of
such an equation relies on the diagonalization of the so-
called A matrix defined through Amn=−Fmn for m�n and
Amm=�nFnm. One can always formally write the solution of
the probability vector P�t� from its initial value P�0� as

P�t� = e−AtP�0� . �2�

If the system is ordered �quasiparticle moving on a crystal
lattice�, this solution becomes practical because the diagonal-
ization can be performed via discrete Fourier transforms and
the kth mode of the probabilities Pk�t�=�mPm�t�eikm can be
written as

Pk�t� = e−AktPk�0� . �3�

Inversion into explicit Pm�t�’s is straightforward, and the spe-
cifics of the dynamics of the A matrix are evident through the
eigenvalues Ak of the latter. An alternative way of analyzing
the transport is via random walks. The relationship between a
random walk description and a master equation description
was given long ago by Bedeaux et al. �3�.

Physical systems in which disorder cannot be neglected
are rampant in nature. Whether the lack of order arises be-
cause some transfer bonds are weaker or stronger than oth-
ers, or whether the quasiparticles must surmount barriers at
some locations but not at others, disorder must be seriously
taken into account in the description of these systems. A
natural way is to replace the given system by a correspond-
ing ordered problem with temporal memory. What this
means is that the original time-local disordered problem,
given by Eq. �1�, is replaced by the so-called generalized
master equation �GME�,

dPm�t�
dt

= �
0

t

ds�
n

Wmn�t − s�Pn�s� − Wnm�t − s�Pm�s� ,

�4�

where the memory functions Wmn are of the form Wm−n, i.e.,
translationally invariant, the replacement equation being,
therefore, soluble via discrete Fourier transforms. Then, in
the Laplace domain �� is the Laplace variable and tildes de-
note Laplace transforms�, the counterpart of Eq. �3� is
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P̃k��� =
Pk�0�

� + Ãk���
, �5�

where Amn=−Wmn for m�n, Amm=�nWnm, and Ak is the
Fourier transform of Am−n. Generalized master equations
were introduced in the 1960s to understand the derivation of
the irreversible master equation from reversible quantum me-
chanics, and a comparative review of methods has been
given by Zwanzig �4�. Needless to say, depending on one’s
choice, one could employ, for the description of transport in
disordered systems, continuous-time random walk �CTRW�
formalisms �5� instead of GME formalisms �6� in equations
such as �4�. The two ways of description, CTRW’s and
GME’s, have been known to be entirely equivalent to each
other in fully arbitrary �rather than space-time decoupled�
forms since 1974 �7�. The space-time decoupled case ap-
peared in Kenkre et al. �6� and the demonstration of the
equivalence for the general �arbitrarily coupled� form was
given in Kenkre and Knox �7� �see, for instance, their Eq.
�43��. It appears that the generalization in Ref. �7� was
missed by several different authors who reported it indepen-
dently but subsequently �8,9�, even six years later �10�. Some
of this was commented on in brief in Ref. �11� �see Eqs.
�27�–�31� of the latter reference�.

Two questions are important to answer in the context of
this program of the description of a disordered system. To
what extent is the replacement of the spatial disorder by tem-
poral memories possible and meaningful even in principle?
And what is the prescription to calculate the memories and
effective transfer rates given appropriate information about
the disorder in the particular system? Without the first, it is
senseless to begin. Without the second, the study is useless.

The first question can be answered quite trivially on a
little reflection. Consider Eq. �1� solved. By assigning the
solutions for the probabilities Pm�t� to an appropriate ordered
lattice, carry out the direct Fourier transform to obtain Pk�t�.
Put the Laplace transform of the latter into

Ãk =
Pk�0�

P̃k���
− � �6�

and Fourier and Laplace invert to get the �translationally
invariant� memories Amn, or equivalently Wmn appearing in
the GME �4�. The presence of initial conditions in the above
prescription means that each possible set of initial conditions
would have a corresponding set of memory functions, a situ-
ation which is obviously unacceptable for practical purposes.
However, in order to turn Eq. �6� into a practical prescription
for computing memories that is independent of initial condi-
tions, all that is necessary is to carry out an ensemble average
over the possible realizations of disorder, compatible with
what is known �for instance a distribution function� about the
disorder. Such an average makes the system translationally
invariant after the average. Then the first term in the right-
hand side of Eq. �6� which is the reciprocal of the Fourier
and Laplace transform of the �ensemble-averaged� propaga-
tor, is independent of initial conditions. The propagators di-
rectly lead to the memories.

This is precisely the method devised long ago by Kenkre
�12,13� to obtain exact expressions for memory functions
analytically for a quantum mechanical �not disordered� sys-
tem, although no ensemble average was involved in that con-
text. Because Eqs. �1� and �4� as well as the operation of
averaging over configurations are linear, it quite unnecessary
to make any assumptions or offer demonstrations to be able
to state with certainty that the replacement program is pos-
sible. Analyzing the problem from the viewpoint of the ap-
plication of projection techniques �14� to the problem, it also
becomes clear from Zwanzig’s formal theory that a memory
will automatically appear in a closed description of any
quantity that is formally projected from another whose evo-
lution equation is time local. Here the projection is repre-
sented by an ensemble average over disordered realizations.
This too requires no calculation, only a moment’s reflection.
The initial condition problem, rarely discussed in the disor-
der context, also makes its appearance in the projection for-
malism �14,15�. It appears as a separate term. In the original
context �14� it is removed through the initial random phase
or diagonality assumption. In our present disorder context it
disappears on carrying out the ensemble average we have
mentioned above.

What is really necessary in the sense of calculations
comes to the second question we have posed above, i.e., the
finding of an explicit and practical prescription that would
allow one to go from information about the disorder in the
real system to the memories �or pausing time distribution
functions� in the replacement problem. Very few instances of
such a prescription exist in the literature, a noteworthy at-
tempt being in the early work of Scher and Lax �16� that
gave support to the well-known theory of Scher and Montroll
�17�: on a phenomenological basis, the latter addressed with
great success unexplained puzzles of transport in xerographic
materials. Known information about transfer rates between
randomly located sites is converted via an approximation
scheme in the appendixes of Ref. �16�, into the continuous-
time random walk pausing time description. That is the kind
of prescription that one needs in developing a usable theory.

The present paper focuses on a different manner of con-
verting disorder information into temporal memories that has
to do with the venerable subject of effective-medium theories
�EMT’s� �18–22,26–31�. We provide the essential back-
ground on EMT’s in Sec. II, along with a prescription we
provide in a particularly convenient form that transforms the
disorder into explicit memory functions via a double Laplace
transform procedure. Our prescription facilitates the extrac-
tion of the results we present in subsequent sections. The
spirit of the investigations we present is most akin, among
early attempts that have discussed memory functions in the
EMT context �10,23�, to the work of Haus and Kehr �24,25�.

II. EXPLICIT DISORDER-TO-MEMORY TRANSFORM

Effective-medium theories are unabashedly approximate,
i.e., do not claim to provide an exact solution of the problem.
They sacrifice exactness for practicability, i.e., prefer useful-
ness to avoidance of approximations. One of the first in-
stances of their application is by Bruggeman �19� but many
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later and independent reports may also be found �20�. The
basic idea, explained in many textbooks and reviews �18�, is
to assume that the memory represents an effective ordered
medium in a mean-field sense with a magnitude �of the
memory� which is such that any departures, introduced in
keeping with whatever information is known about the dis-
order, average out to zero, thus establishing the ordered sys-
tem as representing a variationally optimum limit.

To understand this concretely, we consider from now on
in this paper a one-dimensional case of Eq. �1� with bond
disorder,

dPm�t�
dt

= Fm+1�Pm+1�t� − Pm�t�� + Fm�Pm−1�t� − Pm�t�� ,

�7�

the disorder being expressed via a distribution ��f�. What
this means is that any transition rate Fm can have any posi-
tive value f with probability density ��f� normalized such
that �0

���f�df =1. No correlations exist in the actualization of
rates at different locations. The replacement of the disordered
time-local system by an ordered system with memory then
proceeds by writing in place of Eq. �7� a GME

dPm�t�
dt

= �
0

t

dsF�t − s��Pm+1�s� + Pm−1�s� − 2Pm�s�� ,

�8�

which is translationally invariant and describes elemental
transfer interactions that are nearest neighbor as in the origi-
nal �disordered� problem.

When applied to the present system, the general effective-
medium concept requires the following procedure. One
evaluates the probability propagators for two different sys-
tems: the ordered system obeying Eq. �8�, and a system
obeying Eq. �8� augmented by terms that represent a single
disordered bond. Transport across that bond occurs not
through the memory F�t� but through a rate f drawn from the
distribution ��f�. One averages the latter propagators over
the distribution, i.e., carries out an integration of the result
with weight ��f�, and demands that the average equal the
corresponding ordered propagators. Details may be found in
the references given and lead straightforwardly to

�
0

�

df
��f�

1 + 2�f − F̃������̃0��� − �̃1����
= 1. �9�

The above equation is an implicit equation for the Laplace
transform of memory F that can be obtained in principle
from the given probability distribution function ��f�, the

quantities �0
˜ ��� and �1

˜ ��� being the Laplace transforms of
propagators of the ordered system: the probability of remain-
ing on the site initially occupied is �0 whereas the probabil-
ity of occupation of the adjacent site is �1. Equation �9� is
the same as Eq. �22� of Ref. �18�, or Eq. �5.4� of Ref. �21�, or
Eq. �7� of Ref. �23�, or Eq. �3.17� of Ref. �26�, or Eq. �38� of
Ref. �22�. Through a simple manipulation based on express-
ing the propagator difference in terms of the time derivative
of the self-propagator �32�, we rewrite it first as

�
0

�

df
��f�

f + F̃���� ��̃0���

1 − ��̃0���
	 =

1

F̃���
�1 − ��̃0���� , �10�

and then, by introducing a quantity �, in the remarkably
simple and convenient form

�
0

�

df
��f�
f + �

=
1

F̃ + �
. �11�

The quantity ��� , F̃� is a function of both � and F̃��� since

the self-propagator �̃0 depends explicitly on F̃��� as well as
on �. Generally,

� = F̃���� ��̃0���

1 − ��̃0���
	 . �12�

For the infinite one-dimensional �1D� chain with nearest

neighbor rates, given that, in this case, ��̃0 equals

�1+4F̃��� /��−1/2, one has the specific expression

� =
�

4
�1 +
1 +

4F̃���
�

	 . �13�

As we will see below, this restatement �11� of the basic
EMT equation �9� allows us to obtain a number of our results
in a straightforward fashion. With very few exceptions in the
literature, the result �9� is used in the long-time limit and
therefore involves the Markovian replacement of F�t� by
��t���0

�F�s�ds�. This is equivalent to the �→0 limit. By an

Abelian theorem ��̃0 becomes identical to the t→� limit of
the self-propagator, which is zero if the system considered is
an infinite chain. Equation �11� then reduces to the well-
known effective-medium theory result �29� that the effective

transfer rate Feff=�0
�F�s�ds= F̃��→0� equals the harmonic

mean of the disordered f’s:

1

Feff
=

1

F̃�0�
= �

0

�

df
��f�

f
. �14�

By contrast, our interest in the present paper is to extract
information from the memory equation without taking the
Markovian limit, and to go beyond common uses of
effective-medium theory. We will derive some general fea-
tures of the EMT memory in Sec. III, describe our extensions
of the theory for times that are not asymptotic in Sec. IV,
analyze the emergence of spatially long-range memories in
Sec. V, study finite-size effects in Sec. VI, and present con-
clusions in Sec. VII.

The first of the results of our present investigation is the
reformulation implicit in Eq. �11� interpreted as a transform
of the distribution function ��f� �disorder information� into
the effective medium quantity F�t� �temporal memory�. Spe-
cifically, we can regard Eq. �11� as related to a double
Laplace transform. One applies the direct Laplace transform
twice: first to ��f�, with a dummy variable y as the Laplace
variable, to obtain g�y�, and then to g�y� with � as the
Laplace variable to obtain h���:
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g�y� = �
0

�

��f�e−yfdf , h��� = �
0

�

g�y�e−�ydy .

The prescription for extracting the memory F�t� in the
EMT equation �8� from the disorder distribution ��f� con-
sists, thus, of computing the double transform h��� of the
disorder distribution, equivalently performing the integral on
the left side of �11�, and inverting into the time domain the

memory transform F̃��� after solving for it from the implicit
equation

h��� =
1

F̃��� + ���,F̃�
. �15�

One has, thus, a practical prescription to obtain the t depen-
dence of the memory F�t� from the disorder ��f�.

The usefulness of the form of the basic equation we have
presented, Eq. �11�, should be already clear by comparison to
the well-known asymptotic result for the effective rate Eq.
�14� and noticing from Eq. �12� or Eq. �13� that in the
asymptotic limit � vanishes. Further uses are reported in the
rest of the paper.

III. NATURE OF THE EFFECTIVE-MEDIUM MEMORY
FUNCTIONS

We have applied the prescription of Eq. �11� to various

distribution functions ��f� to obtain F̃��� and discovered that
the results share a number of common features. These fea-
tures become apparent on inverting the transform to obtain
F�t�, the memory function in the time domain, and can be
understood as we show below. The numerical inversion
scheme we use is �33–35�

Fg�t,M� =
ln 2

t
�
k=1

2M

�kF̃�k
ln 2

t
	 ,

�k = �− 1�M+k �
j=��k+1�/2�

min�k,M�
jM+1

M!
�M

j
	�2j

j
	� j

k − j
	 , �16�

where Fg�t ,M� is the approximation to the Laplace inverse

of F̃���. The precision required to sum the series, i.e., the
number of significant digits, is 2.2M while the precision of
the resulting expression is 0.90M. So, if one uses double
precision in the calculations, the value of M should not be
larger than 7. For a detailed discussion of the numerical in-
version of Laplace transforms, see Ref. �35�. Note that the
function is only evaluated at the real and positive values of
the Laplace variable �.

The result of the Laplace inversion is always that the
EMT memory F�t� consists of two pieces, a �-function at the
origin of time �t=0� and a part that is negative but finite. A
schematic depiction is given in Fig. 1. In order to understand
this and other qualitative, and some quantitative, aspects of
F�t� from general arguments, consider the actual system evo-
lution equation �7� on the one hand, and the representative
EMT equation �8� on the other, both for an initial occupation
of only the site m. Let us first evaluate the first time deriva-

tive of Pm�t� at the initial time. The respective results are

�dPm�t�
dt

	
t=0

= − �Fm + Fm+1� �17�

for the actual master equation, and

�dPm�t�
dt

	
t=0

= �
0−

0+

ds F�t − s��Pm+1�s� + Pm−1�s� − 2Pm�s��

�18�

for the representative EMT equation. A configuration average
over the distribution ��f� converts the right-hand side of Eq.
�17� into −2�f�=−2�df��f�f . It is impossible for Eq. �18� to
yield a non-zero result �because of the limits of integration�
unless F�t� contains a � function at the origin. As Eqs. �17�
and �18� must yield results that equal each other, we deduce
that the form of the EMT memory function is

F�t� = �f���t� − Q�t� . �19�

The origin of the � function at t=0 is clear from the above
analysis. That the additional part must have a time integral
for all time which is negative follows from the general result
�14� that the integral over all time of F�t� is the harmonic
mean 1 / �1 / f�=�df��f� / f which is always smaller �36� than
the arithmetic mean �f�.

We also note that the integral of Q�t� over all time is now
determined:

�
0

�

Q�t�dt = �f� −
1

�1/f�
. �20�

Additional information can be obtained in this exact manner
about the memory function, for instance, the initial value of
Q�t�. Differentiation of Eq. �7� with respect to time yields the
initial second time derivative

�d2Pm�t�
dt2 	

t=0
= 2�Fm+1

2 + Fm
2 + Fm+1Fm� . �21�

Similarly, differentiation of the EMT generalized master
equation �8� yields, after a configuration average,

0

0

time

F
(t

)

Q(0)

FIG. 1. Schematic description of the shape of the effective-
medium memory function F�t� showing the � function of strength
�f� at the origin and the negative piece Q�t�. The time integral from
0 to � of the memory F�t� is 1 / �1 / f�.
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�d2Pm�t�
dt2 	

t=0
= 6�f�2 + 2Q�0� . �22�

Carrying out the configuration average of the former result,
which gives 4�f2�+2�f�2, and equating the two values of the
second time derivatives at the initial time, we can evaluate
Q�0� exactly for any distribution function as

Q�0� = 2��f2� − �f�2� = 2
�� df ��f�f2	 − �� df ��f�f	2� .

�23�

It is also straightforward to continue in this manner with
further differentiations to obtain exact initial values of higher
derivatives of Q�t�. For instance, in terms of the A matrix
appearing in Eq. �2�, we can evaluate the initial value of the
rth derivative of Pm via

�drPm

dtr 	
t=0

= �− 1�r�Ar�mm

and proceed as shown above with configuration averages.
For our nearest neighbor rate system we have
Amn=−Fm+1�m,n+1−Fm�m,n−1+ �Fm+1+Fm��m,n.

We do not carry out this program here but use the limited
information gathered above to develop a simple analytical
approximation to the memory cast in the form of a difference
of a term proportional to a � function and another to an
exponential. This “exponential” approximation to the EMT
memory for any given distribution of the rates is

Fa�t� = �f���t� − 2��f2� − �f�2�e−t��2��f2�−�f�2��/��f�−��1/f��−1��.

�24�

The subscript a clarifies that the memory is approximate.
While the precise shape of the actual memory function will
not be captured by our approximation �24�, examples to be
given in the next section will make clear that the approxi-
mate memory can be remarkably good.

The general behavior of the time dependence of the
memory function consisting of a decay �infinitely fast for our
system� to negative values and then a rise which is often
relatively slower is typical in many systems. It is usually
encountered in studies of the velocity autocorrelation �v�t�v�
which is, needless to say, very closely related �in our case
simply proportional� to the memory function. The small-time
behavior represents initial transfer at a higher rate; the sub-
sequent behavior is affected by disorder or imperfections in
the system as they are encountered in the motion. Indeed, the
velocity autocorrelation for a random walker completely
confined to a finite space exhibits this very behavior, the
overall integral of �v�t�v� for all time being precisely zero
because of the confinement: the mean square displacement
saturates in this case �see, e.g., Ref. �37� for a nuclear mag-
netic resonance context.�

IV. BEYOND ASYMPTOTIC DESCRIPTION

Research reported on the basis of effective-medium
theory is almost entirely focused on an asymptotic descrip-

tion of quantities such as the diffusion constant. There have
been a few exceptions as in the work with focus on the ac
conductivity, e.g., by Odagaki and Lax �26�, and others �18�,
the publications of Haus and Kehr �23–25�, the anisotropic
disordered systems studied by Parris �27�, and the granular
material stress work of Kenkre �30�. One of the questions we
address in the present paper is how well effective-medium
theory works for times outside the long- and short-time
asymptotic domains, i.e., for all times. To address this prob-
lem we now compute the memories explicitly for three dif-
ferent disorder distribution functions ��f�, use those memo-
ries in the GME to calculate observables, and compare the
results to numerically obtained exact solutions of the disor-
dered master equation.

A. Some specific distributions �(f)

A natural distribution to consider is the multi-� distribu-
tion

��f� = �
i=1

M

	i��f − f i� ,

wherein the nearest-neighbor transition rates may take one of
M values f i each with a weight 	i, with �i=1

M 	i=1. We will
focus particularly on the case M =2, so that

��f� = 	��f − f1� + �1 − 	���f − f2� . �25�

The arithmetic and harmonic means of the rates, and addi-
tionally the mean of the square of the rates, are given by

�f� = 	f1 + �1 − 	�f2,

1

�1/f�
=

f1f2

	f2 + �1 − 	�f1
,

�f2� = 	f1
2 + �1 − 	�f2

2. �26�

The distribution ��f� for this case is shown as the two arrows
in Fig. 2.

The second particular distribution we consider is the 

distribution �related closely to the Poisson distribution�:

��f� =
�n+1


�n + 1�
fne−�f . �27�

The arithmetic and harmonic means of the rates and the
mean of the square are

�f� =
n + 1

�
, �28�

1

�1/f�
=

n

�
, �29�

�f2� =
�n + 1��n + 2�

�2 . �30�

A plot of ��f� itself is displayed for the particular case of
n=1 and �=4 in Fig. 2.
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The third case we consider is the triangular distribution
given by

��f� = ��f − f0 + fb�/fb
2, f0 − fb � f � f0,

�− f + f0 + fb�/fb
2, f0 � f � f0 + fb,

0 elsewhere.
� �31�

The minimum possible rate is f0− fb and the maximum pos-
sible rate is f0+ fb. The distribution rises linearly from the
minimum value with slope 1 / fb

2 until it attains the value 1 / fb
at f = f0 and then descends with the same magnitude of the
slope down to the maximum value. The meaning of f0 is that
it is the value of f at the apex �and hence the mean of the
distribution�, and fb is half the length of the base of the
triangle. The distribution is shown in Fig. 2 for f0=0.3 and
fb=0.2. It leads to

�f� = f0, �32�

�f2� = f0
2 +

fb
2

6
, �33�

1

�1/f�
=

fb

ln�1 +
2fb

f0 − fb
	 +

f0

fb
ln�1 −

fb
2

f0
2	 . �34�

B. Evaluation of memory functions for specific cases
of �(f)

The approximation to the memory given by the formula
�24� is easily evaluated for the three distributions by substi-
tuting in the formula the respective values of �f�, �f2�, and
1 / �1 / f�. As one example, note that for the 
 distribution it is
given by

Fa�t� = �n + 1

�
	��t� − 2�n + 1

�2 	e−2�n+1�t/�. �35�

The memory function F̃�t�, whether derived from �11� or
the simpler �24�, can be used immediately to calculate other,
more directly observable, quantities. A useful quantity is the
�dimensionless� mean square displacement �m2�
=�mm2Pm�t� for initial localization at the origin. It is simply
twice the double time integral of the memory:

�m2� = �
m

m2Pm�t� = 2�
0

t

ds�
0

s

F�y�dy .

The time-dependent diffusion coefficient D�t�, a quantity
often used in transport theory to describe the instantaneous
state of motion, may be defined as one-half the product of
the square of the intersite distance a and the time derivative
of the mean square displacement. It is proportional to a
single time integral of the memory function:

D�t� =
a2

2
�d�m2�

dt
	 = a2�

0

s

F�s�ds .

These have exact expressions in terms of �f� and Q�t� ap-
pearing in Eq. �19�. If we use our simple exponential ap-
proximation for Q�t�, they become

�m2�
2

=
t

�1/f�
+

��f� − �1/f�−1�2

2��f2� − �f�2�
�1 − e−t/
� , �36�

D�t�
a2 = �f� − ��f� − �1/f�−1��1 − e−t/
� , �37�

where the time constant 
 is given by


 = � �f� − ��1/f��−1

2��f2� − �f�2� 	 .

It is straightforward to get expressions particular to the dis-
tribution functions chosen. As expected, the mean square dis-
placement starts out linearly with slope twice the arithmetic
mean of the rates and ends up also linearly with slope twice
the harmonic mean of the rates. Correspondingly, the time-
dependent diffusion constant decays from a higher to a lower
value.

There are a number of ways the above simple analysis can
be put to use to extract physical information. For instance,
the mean square displacement of a walker initially localized
at a single site will first grow linearly but then saturate to a
finite value at long times if there are broken bonds in the 1D
infinite system. Broken bonds correspond to a ��f� that has a
nonzero value at f =0 which means that there are bonds at
which the transition rate is zero. In such a case, 1 / �1 / f�, the
harmonic mean of the rates, and consequently the long-time
D�t�, vanish. Equation �36� can then be used to extract the
value at which the mean square displacement saturates at
long times:

lim
t→�

�m2� =
�f�2

�f2� − �f�2 . �38�

This consequence of the exponential approximation �24� to
the memory is simply a case of the general EMT result

0 0.5 1
0

2.5

5

f

ρ
(f

)
gamma

triangular

FIG. 2. Examples of probability distributions ��f�. The two ar-
rows represent the double-� distribution with equal weights
	=1−	=0.5. A 
 distribution with n=1 and �=4 and a triangular
distribution with f0=0.3 and b=0.2 are depicted by the solid and
dashed lines, respectively. Units of f in the plot are arbitrary and the
same as those of f0 and b for the triangular distribution, and recip-
rocal to those of � for the 
 distribution.

KENKRE, KALAY, AND PARRIS PHYSICAL REVIEW E 79, 011114 �2009�

011114-6



lim
t→�

�m2� = − 2 lim
�→0

dQ̃���
d�

. �39�

This may be proved from the Laplace transform of the non-�
part of the memory in Eq. �19� via a Taylor expansion:

F̃��� = �f� − Q̃��� =
1

�1/f�
− ��dQ̃���

d�
	

�=0

−
�2

2
�d2Q̃���

d�2 	
�=0

¯ .

In the presence of broken bonds in 1D, the harmonic mean of
the f’s vanishes. Since the mean square displacement is twice
the double time integral of F�t�, the limit �→0 and the use
of an Abelian theorem establish Eq. �39� quite generally. If
F�t� is expressed via the exponential approximation �24�, the
general result reduces to Eq. �38�.

Despite what appears as an impressive agreement of the
exponential approximation that we see displayed in Fig. 3 for
a double-� distribution with 	=0.9, and f2 / f1=10, the ap-
proximation generally will not capture the actual decay in
time for all distribution functions and may be regarded only
as a highly simplified manner of description. For greater ac-
curacy than can be provided by the relatively coarse approxi-
mation of Eq. �24�, it is necessary to return to the prescrip-

tion of Eq. �11�, calculate F̃��� through the solution of the
implicit equation, and then invert the transform to obtain the
memory. When the EMT memory is calculated in the
Laplace domain via our prescription based on Eq. �11�, the
derived quantities D�t� and �m2� can be obtained very simply

in the Laplace domain by dividing F̃��� by � and �2 �except
for proportionality constants� respectively.

The calculation of F̃ from Eq. �11� is easy and analyti-
cally doable for the double-� distribution. Defining the quan-
tity

� = �1 − 	�f1 + 	f2,

we get the soluble cubic

F̃3 − 2F̃2�2�2/� + f1 + f2� + F̃�8�f1f2/�

+ �2f1f2 + �f1 + f2�2 − �2�� − 4f1
2f2

2/�

− �2f1f2�f1 + f2� − 2�f1f2� = 0. �40�

Standard analytic formulas lead to the appropriate solution
which can then be numerically Laplace inverted. We have
carried out such a procedure in the next section.

Similar procedures can be used for the 
 distribution and
the triangular distribution. Explicit polynomials do not result

for F̃ in those cases but the equations can be solved numeri-
cally and inverted. We have carried out these procedures for
these two distributions as well and report the results after
inversions into the time domain using Eq. �16�.

C. Comparison of EMT and exact solutions for all times

We now display the results of the predictions of effective-
medium theory and the numerically obtained exact evolution
not only for long times as is usually done, but for short and
intermediate times as well. For each distribution we calculate
the exact and the full EMT results. The exact results are
obtained via numerical matrix operations as explained else-
where in this paper. With the exception of single-run studies
to be reported further below, we repeat the operations tens of
thousands of times, each time using a different realization of
the chain. Then we average over all runs to produce the
quantity we desire. The effective-medium theory prediction
for that quantity is also determined via the effective-medium
memory function both in its full form as given from our Eq.
�11�, and from our analytic approximation, Eq. �24�.

We first treat the case when a single site is initially fully
occupied.

1. Localized initial condition

Figures 4 and 5 display the comparison graphically, the
quantity selected being the time-dependent diffusion coeffi-
cient normalized to its initial value: D�t� /D�0�. All three dis-
tributions are considered in Fig. 4. The agreement of the
effective-medium theory �solid lines� with the exact evolu-
tion �open circles� is remarkably good for all cases consid-
ered and for all intermediate times as well. The description
thus appears excellent for the parameters considered for
times that need not be asymptotic.

In order to explore parameter values for which the agree-
ment may not be as good, we restrict ourselves to the
double-� distribution in Fig. 5�a�, take the two possible rates
f1 and f2 to occur with equal weight �	=0.5�, but vary the
ratio: f1 / f2=0.5,0.1,0.01 as we go down the graph. EMT is
still found to provide a fine description for all times but
deviates more as the rates become more disparate. To drive
this situation to an extreme where the EMT would serve
worst, we consider a broken bond system in Fig. 5�b�. This
means we take f1=0 and f2�0 for different values of the
concentration 	. The large time value of D�t� is now zero

0 1 2 3

0

−1

1

f2t

F
(t

)/
Q

(0
)

FIG. 3. Comparison of the exact �numerical� memory function
with the approximate EMT given by our formula �24� for a
double-� distribution in which the concentration of the smaller of
the rates is 0.9 and the ratio of the transition rates is 10. Plotted are
the exact memory function �solid line� and the exponential approxi-
mation �dotted line�. It is surprising how close the agreement is,
given the coarse nature of the approximation.
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and the mean square displacement �m2� �proportional to the
integral of D�t�� saturates. Physically, the saturation value
measures the size of clusters �separated by broken bonds
from other clusters� on which the walker is localized at long
times. We have already obtained analytic expressions for the
saturation value from the full EMT �in Eq. �39�� and from the
exponential approximation �in Eq. �38��. Figure 5�b� is an
attempt at looking at EMT in the worst possible light by
comparing the time evolution of �m2� predicted by it to that
given by exact calculations. We do this for the broken bond
case �f1=0� for two concentrations 	 of broken bonds: 0.01
and 0.1 as shown. The main display in Fig. 5�b� shows the
two �m2� curves. To make the discrepancy of the saturation
value particularly clear, we show the inset in which the one
case 	=0.01 is displayed on a semilogarithmic scale. The
abscissa is the dimensionless time �f�t as in the main figure.
The ordinate is �m2� on a linear scale, the values displayed as
0.5 and 1 being 5000 and 10 000 �i.e., in units of 104�. The
accumulated values of the mean square displacement, the
localization cluster sizes, are 8.71�103 from the exact cal-
culations but only 5.00�103 from the EMT: both are de-
noted by solid lines in the inset. The corresponding values
for the 	=0.1 case are 88.6 and 49.5 respectively. The expo-
nential approximation to the EMT is way off as it predicts 99
for the 	=0.01 case and 9 for 	=0.1. �The latter is denoted
by a dotted line in the inset.� This is to be expected from the
crudeness of that approximation.

2. Extended initial conditions for single runs

An actual experiment in a real physical situation is per-
formed not on an ensemble but on an individual system.
How can EMT, which has at its root an ensemble average,

provide a valid description for the experiment? Standard
Gibbs-Boltzmann arguments do not help as an answer here
because our interest in using EMT is not only for asymptotic
times when the system might have completed the mixing
process but for all times. One possible answer to this ques-
tion might lie in the nature of the initial condition. If it is
extended in space, various configurations of transition rates
in a random system may be realized even at short times. With
this idea in mind we now describe our investigation of ex-
tended initial conditions for single runs. In particular, we
study the agreement of EMT and single-run evolution of the
actual system as we vary the spatial extent of the initial con-
dition.

We carry out calculations from exact numerical consider-
ations for systems of 801 sites without changing the configu-
rations of the transition rates once set in accordance with the
double-delta distribution, and take initial conditions that are
not of the form Pm�0�=�m,0, but of the extended form

10
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0.75
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〈f〉t

D
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〈f
〉

FIG. 4. Comparison of EMT predictions with exact results for
three disorder distributions ��f�. Plotted is the time-dependent dif-
fusion coefficient �normalized to its initial value� as a function of
the dimensionless time 
= �f�t for three cases of ��f� and a localized
initial condition. Solid lines are the effective-medium results and
open circles correspond to the numerically exact results obtained by
averaging over 20 000 different realizations of the disordered chain.
Dashed lines on the right show the asymptotic values of the diffu-
sion coefficient. From top to bottom, ��f� is the double-� distribu-
tion with f1 / f2=0.5 and 	=0.5, a triangular distribtution with f0

=0.3, fb=0.2, and a 
 distribution with n=1. The agreement is
striking for all three cases, not only for extreme limits but for in-
termediate times as well.
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FIG. 5. Worst-case scenario comparison of EMT and exact re-
sults. In �a� we plot the time-dependent diffusion coefficient �nor-
malized to its initial value� as a function of the dimensionless time

= �f�t for the double-� distribution function for 	=0.5 and, from
top to bottom, f1 / f2=0.5, 0.1, and 0.01. While good, the agreement
gets worse for disparate f’s. To explore a regime in which the agree-
ment is bad, in �b� we consider two broken bond systems �the ratio
of the f’s being zero and therefore extreme� with two different
concentrations 	=0.1,0.01 as shown. Plotted is the mean square
displacement showing saturation at long times. Here f1=0 and f2

=0.2. Open circles correspond to the exact �numerical� solution
obtained by averaging over 20 000 different realizations of the dis-
ordered chain which consists of 801 sites. Solid lines are theoretical
results from the EMT. The inset shows the 	=0.01 case, the ordi-
nate being on a linear scale in units of 104. See text for discussion.
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Pm�0� =
1

2� + 1 �
r=−�

�

�n,r,

which represents a patch initial condition of spatial extent of
2�+1 sites. We call this the initial width. The limit �=0
gives us back the initial condition we have used in the stud-
ies above. We find that larger patches result in smaller devia-
tions of the EMT predictions from the exact results.

The inset of Fig. 6 shows values of D�t� /D�0� for a single
configuration for two different values of the width �open
circles represent �=50, crosses represent �=5� along side
the corresponding prediction of effective-medium theory
�solid line�. The integrated difference between the EMT re-
sult and the exact results depicted in that inset �as plotted on
a logarithmic time scale� provides a convenient measure of
the error. We thus define, for each value of �, a measure of
the relative error, through the expression

ER = �
−�

� DEMT�s� − DEX�t�
DEX�s�

ds

where s=ln��f�t�. A plot of the �numerically evaluated� rela-
tive error as a function of the initial width � is presented in
the main graph in Fig. 6, and clearly shows that the relative
error decreases monotonically as the patch width increases.

3. Correlation-type observables

There are, in general, different kinds of observables that
can be computed from the solution to the master equation.
Simple observables O are those which associate with each
site �state� m a value Om that the observable takes when the
particle is in that state. The mean value associated with such
an observable at any time t can then be written as

�O�t�� = �
m

OmPm�t� = �
m,n

Om�m,n�t�Pn�0� , �41�

where in the second form we have expressed the result in
terms of the propagators �, and the initial probability distri-
bution governing the particle’s occupation of the possible
states of the system. This can be put in the form

�O�t�� = �
n

�O�t��nPn�0� , �42�

where

�O�t��n = �
m

Om�m,n�t� �43�

is the mean value of the observable given that the particle
started in state n at time t=0. Simple observables can thus be
calculated by incorporating into the averaging process an
average over the different possible starting locations of the
particle.

Correlation-type observables, also of great interest in sta-
tistical physics, do not correspond to �simple� observables of
this type. Indeed, they span two or more different states �or
the same state at two different times�. An example is
�A�t�B�0�� given by

�
m,n

Am�m,n�t�BnPn�0� = �
n

�A�t��nBnPn�0� . �44�

Here Am and Bm are, respectively, the values of A and B
when the particle is in the state m, and

�A�t��n = �
m

Am�m,n�t� �45�

is the mean value of A at time t if the particle started in state
n at t=0. Consider, for instance A� with components

Am
� = �m,�. �46�

It is an indicator observable taking the value 1 if the particle
is at site � and the value 0 otherwise. Then the correlation
function

�A��t�A���0�� = ��,���t�P���0� �47�

is just the propagator ��,�� weighted by the relative initial
probability of finding the particle in the state ��. This shows
that the propagators ��,�� themselves can also be considered
as observables of the system. Of course, in a specific disor-
dered system, the self-propagator ��,��t�, e.g., will depend on
the location of site � in the disordered chain. The effective
medium propagator �0�t� may not, therefore, give a good
approximation to any given self-propagator ��,��t� in any
single realization of the disordered system. We intuitively
expect, however, that self-propagators, averaged over an ini-
tial distribution of starting positions on the same chain, will
approach that of the effective medium, as the width of the
initial distribution of starting sites is increased, i.e., that
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FIG. 6. Relative difference between exact results and EMT, or
error of the EMT, for a single run. Plotted as large open circles is
the error �see text for definition� as a function of the number of sites
initially occupied, i.e., the value 2�+1. No averages are performed.
The error is seen to decrease as the initial width increases, allowing
the walker to sample different configurations. Inset: Comparison of
D�t� /D�0� curves for two different values of the initial width,
�=5 �crosses� and 50 �open circles�, with the EMT �solid line�. It is
clearly seen that EMT agrees with the simulations for spatially ex-
tended initial conditions without averaging.
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lim
�→�

1

2� + 1 �
�=−�

�

��,� = �0.

To verify this intuition, we present calculations in Fig. 7 of
the self-propagator averaged over such an initial distribution
of starting sites, for different values of �=3, 9, 15, and 25. A
comparison of the limiting curve with the predictions of ef-
fective medium theory is given in Fig. 8.

V. SPATIALLY LONG-RANGE MEMORIES

The original evolution equation that describes the disor-
dered system, Eq. �7�, is local in time and nearest neighbor in
the character of its transition rates. Given that effective-
medium theory provides an approximate rather than exact
description of the actual dynamics described by Eq. �7�, one
may ask whether the introduction of nonlocality in time in

the EMT should be accompanied by nonlocality in space as
well. This is a natural question to pose because of the emer-
gence of spatially long-range memories that were found long
ago �12,13� when GME’s were calculated for quantum me-
chanical systems by the method of Eq. �6�, similar in spirit to
the one followed in the EMT. Stated differently, the question
we ask is whether the replacement of Eq. �7� by Eq. �8� with
nearest-neighbor transition memories is sufficient or whether
the latter should span longer distances. The answer is pro-
vided in this section.

Consider Eq. �7� solved for P̃m���, the Laplace transform
of the probability of occupation of the mth site in terms of
the matrix A� corresponding to the configuration � �a par-
ticular realization of the transition rates f throughout the sys-
tem�. Carrying out the average over the configurations � one
gets a translationally invariant situation:

P̃m��� = �
n
� 1

� + A��
m−n

Pn�0� . �48�

Performing a discrete Fourier transform, we get P̃k��� / Pk�0�
which we substitute in Eq. �6� to get the exact memory func-
tion

Ãk = � 1

� + A
�k

− � . �49�

Because the configuration average has been carried out al-
ready at this point, we do not display the superscript � on the
A.

There is no guarantee whatsoever that the k dependence

of Ãk is of the form �1−cos k�. The exact memories need
not, therefore, have nearest neighbor character. The nature of
the disorder will influence the k dependence. It is therefore
clear that spatially long-range memories will naturally de-
velop, in general, their precise form being determined by the
particular distribution ��f�.

The exact procedure is to be contrasted with the EMT
procedure, which, as explained in Sec. II, necessarily results
in the absence of spatially long-range memories. This is so
because one assumes the memories to be nearest neighbor in
character, and obtains them variationally.

In Fig. 9 we display the result of the full numerical exact
procedure outlined above carried out on a chain of 801 sites,
making sure during each run that the value of Pm�t� is neg-
ligible �comparable to the precision of the machine used� at
the boundaries of the chain. The distribution used is
double-�, the two rates are in the ratio f1 / f2=0.1, and the
concentration of each is equal to the other. We plot in Fig.
9�a� the Laplace transform of the nearest-neighbor memory

obtained from the exact procedure �solid line�, F̃1���, as a
function of the Laplace variable �, both the abscissa and the
ordinate being expressed in units of the average rate �f�. Also
plotted is the result of the EMT procedure �dots� and the
dashed line that represents the asymptotic rate 1 / �1 / f�.
There is hardly any difference in the exact and the EMT
result. What this must mean is that the non-nearest-neighbor
memories must be much smaller in magnitude relative to the

nearest neighbor F̃1���. This is shown clearly in Fig. 9�b�
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FIG. 7. Effect of varying patch width of the initial condition.
Plotted is the time dependence of the self-propagators in a disor-
dered chain �the same disordered chain is used in all of the calcu-
lations� whose transfer rates are drawn from a double-� distribution
with f1 / f2=0.1 and 	=0.5. Self-propagators at 401 sites, 200 to the
left and 200 to the right of the origin, are calculated. The dashed
line is the average of all of the 401 self-propagators obtained this
way. The solid lines correspond to averaging over 3, 9, 15, and 25
�from top to bottom� of the self-propagators around the origin.
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FIG. 8. Self-propagators obtained from the disordered chain
�numerically, represented by the open circles�, by the effective-
medium theory �solid line�, and from an ordered chain with transfer
rates Feff throughout �dashed line�.
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where the longer range memory transforms, F̃n���, are
shown. The scales in the plots in Figs. 9�a� and 9�b� differ by
a little less than three orders of magnitude so it is indeed
clear that the long-range memories are small. It is thus that
the EMT can successfully describe the evolution even though
it possesses only nearest-neighbor memories. Note that while

F̃1��� is sigmoidal in shape, the long-range memories seem
to peak for intermediate � and to be negligible for both large
and small �.

VI. FINITE-SIZE EFFECTS

To the best of our knowledge, effective medium consid-
erations have been used only on infinitely large systems in
the past. We present below useful EMT results for finite rings
of N sites, i.e., chains obeying periodic boundary conditions.
The self-propagator for such a system is given in the Laplace
domain by

�̃0��� =
1

N
�

k

1

� + 2F̃����1 − cos k�
, �50�

where k takes on the values �2� /N� �0,1 ,2 , . . . ,N−1�. In the
long-time limit, the self-propagator �0�t� tends to 1 /N as one

knows both from the explicit limit of Eq. �50� or from the
physical statement that the probability equalizes over the
ring sites. This means via an Abelian theorem that

��̃0���→1 /N as �→0. The use of this limit in Eq. �12� leads
to an important long-time consequence of our general equa-
tion �11�,

1

Feff
=

N

N − 1
�

0

�

df
��f�

f + Feff� 1

N − 1
	 , �51�

which is an extension to finite systems of the well-known
harmonic mean result of Eq. �14�. Here we have used Feff

= F̃��→0� as earlier. Equation �51� must be solved for Feff
implicitly and becomes explicit only as N→� when the Feff
term within the integral disappears.

The implicit equation for the case of the double-� distri-
bution function of Eq. �25�,

Feff =
N − 1

N � 	

f1 +
Feff

N − 1

+
1 − 	

f2 +
Feff

N − 1
�

−1

,

can be converted into a quadratic equation and solved explic-
itly. With

j = f1�1 − N + N	� + f2�1 − N	� ,

one has

Feff =
j � 
j2 + 4�N − 1�f1f2

2
. �52�

Normally, i.e., when both f1 and f2 are nonzero, there is a
unique solution as we discard the negative root because Feff
must be real.

If one of the two possible rates, e.g., f1, is zero, i.e., if
broken bonds exist in the finite system, an interesting situa-
tion arises, both roots being of physical interest. The lower
root is zero, not negative, in this case. If one varies the con-
centration 	 of the broken bonds, a transcritical bifurcation
occurs as displayed in Fig. 10 at the point at which 	 equals
the reciprocal of the number of sites in the ring. As this
number increases, the bifurcation point moves toward van-
ishing concentration. We recover the known result that, for
an infinite system, the effective rate is zero for any concen-
tration of broken bonds. Additionally, we get a percolation
threshold for finite systems. The two solutions exchange sta-
bility at the critical concentration �	=1 /N�, there being
transport throughout the ensemble-averaged system for bro-
ken bond concentrations below the critical value.

It is interesting to see how the effective-medium nearest-
neighbor memory function compares with the exact nearest-
neighbor memory function as �→� in finite rings. One can
obtain the exact memory functions for a ring of N sites
through Eq. �49� by averaging over all possible configura-
tions of the ring. For simplicity, we will consider the
double-� distribution with 	=1 /2. For rings with N=2, 3, 4,

and 5 sites we have the exact values, lim�→0F̃1
ex���,
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FIG. 9. Spatially long-range memories obtained from exact nu-
merical considerations plotted as a function of the Laplace variable.

Units on both axes are of �f�. Plotted in �a� is the exact F̃1��� �solid
line�, calculated for rings of 100 sites, and the almost identical EMT
memory �open circles� along with the asymptotic rate 1 / �1 / f�
�dashed line�. Plotted in �b� on a scale blown up by almost three
orders of magnitude are the much smaller long-range memories

F̃n��� in dotted, dashed, and solid lines, for n=2,3 ,4, respectively.
The distribution is double-� with f1 / f2=0.1 and 	=0.5.
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F̃1
ex�0�

=�
2f2

r

r + 1
�N = 2� ,

8f2
r�r + 2��2r + 1�

�5r + 1��r + 5��r + 1�
�N = 3� ,

16f2
r�1 + 3r��3 + r��r + 1�

124r�1 + r2� + 230r2 + 17�1 + r4�
�N = 4� ,

16f2
r�3 + 2r��2 + 3r��1 + 4r��4 + r�

�7 + 3r��3 + 7r��r + 1��7 + 36r + 7r2�
�N = 5� .

�
�53�

The effective-medium memory function is given by Eq.
�52� with 	=1 /2. In order to quantitatively examine how
different the exact and effective-medium values are, we de-
fine the relative difference as

1

f2
�Feff − F̃1

ex�0�

F̃1
ex�0�

	 ,

and plot it as a function of f1 / f2 in Fig. 11 for N=3, 4, and
5. We find that the values predicted by the effective-medium
theory are slightly different from the exact values. The rela-
tive difference between the two decreases as the number of
sites in the ring becomes larger and larger. Therefore the
effective medium theory predicts the correct values in the
limit �→� when N→�, but finite size effects exist other-
wise. Note that, for finite N, effective-medium theory always
predicts larger values than those that are calculated exactly.

VII. CONCLUDING REMARKS

The purpose of this paper is to make a contribution to the
description of transport of quasiparticles such as electrons,

excitons, atoms, interstitials, vacancies, or other more for-
mally regarded random walkers in a disordered system such
as a solid, a photosynthetic system, or a molecular aggregate.
We have focused our attention on incoherent motion as de-
scribed by a master equation and have restricted our analysis
to nearest-neighbor transfer on a one-dimensional chain, in-
finite or finite, obeying periodic boundary conditions �ring�.
Our general goal is to translate information about static spa-
tial disorder of the given system into dynamic temporal fea-
tures of a representative ordered system, to do it explicitly by
converting distribution functions into memory functions, to
study the validity of predictions of the effective medium
theory, and to report several extensions we have made of the
theory.

Starting with the spirit of effective medium theory used
by many �18–23,26� as expressed through Eq. �9�, we arrive
at a transparent prescription Eq. �11�. The prescription is in
the form of a transform, is a natural generalization to all
times of well known results such as the harmonic mean
recipe of Eq. �14� for effective long-time rates, and involves
the solution of an implicit equation for the Laplace transform
of the EMT memory.

We show how to obtain the memory in the time domain
by numerical inversions of the Laplace transform produced
by the solution of the implicit equation. Additionally we de-
rive, exactly, partial information about the memories. We
provide an understanding of the special feature of EMT
memories that it consists of two pieces, of which one is a �
function. We derive a simple approximate formula in the
time domain, Eq. �24�, for the memory. It can provide a
rough and sometimes adequate representation of the exact
evolution as Fig. 3 shows for the particular distribution and
parameter set that we have used in that case. Lest one de-
velop a false confidence in this coarse approximation, we
have shown Fig. 5�b�, in which its predictions for a broken
bond system are quantitatively quite different from the exact
answers.

We use effective-medium theory to go beyond an
asymptotic description and compare the EMT description
with exact �numerically obtained� predictions. The quantity
we choose for comparison is the time-dependent diffusion
coefficient D�t� which is proportional to the time derivative
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FIG. 10. Bifurcation of the effective long-time transfer rate for a
double-� distribution in a finite system of N sites. Plotted is Feff as
a function of the concentration of broken bonds �i.e., bonds with the
rate f1=0�, the rate associated with the remaining fraction 1−	 of
unbroken bonds being equal to f2. A transcritical bifurcation occurs
when 	=1 /N. For concentrations higher than this value, the effec-
tive rate vanishes but changes linearly with the concentration for
lower 	. Solid �dotted� lines denote the stable �unstable� solution.
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of the mean square displacement or equivalently to the time
integral of the memory function. Not only do we find excel-
lent agreement at long and short times as expected from pre-
vious work, but also surprisingly good agreement at interme-
diate results. Figures 4 and 5 show this clearly. We carry out
this comparison in two parts: by doing an ensemble average
over initial conditions for localized initial placement of the
walker; and by doing a single-run �no ensemble average over
initial conditions� analysis for a spatially extended placement
of the walker. The purpose of the latter is to examine the
validity of using ensembles for single run situations in patch-
type initial placement. We also carry out separately configu-
ration averages of the exact and EMT evolutions and find
fine agreement. For this latter purpose we choose the self-
propagator as the quantity to calculate.

We also find that in contrast to the EMT treatment, the
exact replacement of the disordered system by the ordered
system with memory, outlined in the introduction and carried
out in detail in Sec. V, results in spatially long range memo-
ries as in earlier analyses of quantum systems �12,13�. This is
in spite of the fact that the original disordered system has
only nearest-neighbor rates. We display these memories Fn
which connect a site to another, n sites away. We do this both
in the Laplace and the time domains, and find that the
nearest-neighbor ones are typically larger by an order of
magnitude than the others. This explains the success of the
EMT even though its memories have only nearest-neighbor
character.

With the help of our formalism based on Eq. �11�, we
investigate finite-size effects on effective-medium theory and
find interesting results: corrections depending on size appear
in the harmonic mean formula �14�. A bifurcation of the ef-
fective long-time rate of transfer Feff emerges as the concen-
tration of broken bonds is varied. The bifurcation is tran-
scritical in nature, the vanishing solution for Feff being stable
for large concentration of the broken bonds and the nonzero
solution being stable for small concentrations relative to a
size-dependent critical value.

Thus, we have presented a number of extensions of
effective-medium theory in this paper. Not discussed here,
but important to point out, are other recent extensions along
a line of research recently taken by two of the present au-
thors in their study of transport on small-world networks,
particularly of the Neumann-Watts kind �38–40�. In those
systems standard rings �finite chains with periodic boundary
conditions� with nearest-neighbor hopping rates for the ran-
dom walker form the ordered part and additional small-world
connections make up the disordered part. Of particular inter-
est to the developments of the present paper is the use of
effective medium theory to develop memory functions that
connect greater than nearest-neighbor pairs. Indeed, to cor-
rectly describe transport on small-world networks, as well as
on the partially disordered complex networks of Ref. �40�, it
is generally necessary to include memory functions connect-
ing all pairs of sites on the network except nearest neighbors,
in interesting contrast to what we have shown here to be the
case for the 1D disordered chain. It is possible that the tech-
niques developed to understand complex networks can be
applied to understand the nature of the spatially long range
memory functions for disordered systems defined on topo-

logically ordered lattices of the sort we have considered in
this paper.

In examining previous work in this field, we find impor-
tant avenues that were opened by the work of Haus and Kehr
�23–25�. Their approach appears to be similar to ours in
spirit. Prescriptions exist in their work for going from disor-
der to explicit forms of the GME or the CTRW. Furthermore,
their use of projection techniques �14� for the disorder prob-
lem includes important considerations of the initial term
�14,15� which has been often overlooked �10� in applications
of this technique. We have also carefully examined the ques-
tion of the usefulness of the widely quoted analysis of Ref.
�10�. This question is perhaps important given the absence in
that analysis of a practical prescription for obtaining a usable
memory function from a quantity describing disorder such as
a rate distribution function. Our answer is that Ref. �10�
helped stop the unjustified concerns that some authors �41�
seemed to have expressed about the applicability of the
GME, equivalently the CTRW, to disordered systems. Their
message that GME’s or CTRW’s are fully capable of treating
disordered systems is correct and valuable. On the other
hand, we have explained in the Introduction to the present
paper, how the correctness and applicability of GME’s and
CTRW’s can be understood without the need for detailed
argument. The real need is a practical prescription for the
translation of disorder features into the time dependence of
memories or pausing time distributions. The development
and use of such a prescription, already apparent in early
work �16,24,25�, has been attempted in the present paper.

In concluding, for the use of those who prefer to work
with CTRW’s rather than GME’s, we give explicit expres-
sions for the CTRW pausing time distribution functions in
effective-medium theory. The situation here �in the EMT, not
in the exact system as can been seen in Fig. 9� is separable in
time and space, and so could be addressed by the formula in
Ref. �6�. However we exploit the general relation given first
by Kenkre and Knox �7,11� in Eq. �43� of the first of those
references or Eq. �30� of the second. Corresponding to the
GME, Eq. �8�, the CTRW equation which is a sort of non-
Markovian Chapman-Kolmogorov equation, becomes �11�

Pm�t� = Pm�0��1 − �
0

t

ds��s�	 + �
0

t

ds�
n

Qmn�t − s�Pn�s� ,

�54�

with

Q̃mn��� = ��m,n+1 + �m,n−1�� F̃���

� + 2F̃���
	 ,

�̃��� =
2F̃���

� + 2F̃���
. �55�

These formulas can be used after the determination of the
EMT memory in the various ways we have explained.
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