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ABSTRACT 

In our work, we employed molecular dynamics  and Monte Carlo (MC) 

simulations to investigate the supercritical phase of carbon dioxide near its critical 

point. Three systems have been studied. The pure carbon dioxide, mixture methane + 

carbon dioxide at infinite dilution of supercritical carbon dioxide and water + carbon 

dioxide at infinite dilution of supercritical carbon dioxide. The usage of molecular 

simulation methods in supercritical region gave us a distinct advantage of knowing 

the microstructure of the systems in a qualitative and quantitative way. The 

Kirkwood-Buff theory, which predicts the influence of the solvent on the solute, 

enabled us to predict thermodynamic properties of supercritical phase and compare 

them with experimental values. 

We have examined the density effect on structure of the pure carbon dioxide 

and its solutions along its critical isotherm 4 K above its critical point. We focused 

our research and we present results for two basic sections, 

A. Equilibrium and transport properties, namely 

Volumetric properties;  

Average configurational energy;  

Isothermal compressibility;  

Diffusivity; and the  

Isochoric heat capacity  

B. Solution structures at infinite solutions, namely 

Radial distribution function; and  

Coordination number 

We discuss the outcomes based on the density inhomogeneities of the solvent and 

critical fluctuations, which are maximised at the critical point. We found that the 
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addition of methane to supercritical carbon dioxide increases the volume of the 

solution and a cavitation is formed around it. On the hand, the addition of water gives 

a cluster around it in local structure and decrease the volume of solution. We report 

results also of the diffusion coefficients for the pure carbon dioxide and the mixtures 

in this study, which it shows an anomalous decrease close to the critical point of the 

pure carbon dioxide. It is a general conclusion for all the properties we have studied 

that the density dependence along the isotherm is maximised at densities close to the 

critical one. Further, the usage of both molecular dynamics and Monte Carlo in 

supercritical regions validates the extension of the techniques in the supercritical 

region and reveals their limitations.  
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1 INTRODUCTION 

1.1 MOTIVATION 

Supercritical fluids have dissolving power comparable to those of liquids, are 

much more compressible than gases and have transport properties intermediate 

between gas-like and liquid-like properties. These unique properties can be 

advantageously exploited in environmentally benign reaction processes, and make 

SCFs very attractive to industry, where constantly increasing waste disposal costs 

pose major problems.  

Industrial separation processes using SCFs have been well established for 

decades, with the most famous application being coffee and tea decaffeination. Over 

the past few years, there was much interest also in industrialisation of reaction 

processes involving supercritical carbon dioxide. The driving force behind this 

commercialisation of supercritical reaction technology is the goal of developing 

economically as well as environmentally acceptable processes achieving set targets. 

The industrial potential of SCFs as reaction media is enhanced by their capability to 

fine tune reaction rates and the fact that we can select solvent properties. Due to the 

large compressibility of supercritical fluids, small changes in pressure can produce 

substantial changes in density, which, in turn, affect diffusivity, viscosity, dielectric, 

and solvation properties, thus dramatically influencing the kinetics and mechanisms 

of chemical reactions. This provides the opportunity to conduct a multistep synthesis 

in one solvent instead of number of solvents at different conditions. 

Furthermore, while there exists a wealth of potential applications of SCF 

chemistry, realisation of this potential is severely hindered by our inability to predict 

accurately reactivity in SCFs. The Arrhenius equation can be used to predict the 
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reaction rate with temperature but there is no similar equation to predict the reaction 

rate with pressure in SCFs. Solvent properties of SCF are very sensitive to 

temperature and pressure in the compressible region of the phase diagram in the 

vicinity of their critical point. This failure reflects the fact that our current theories of 

solvation and its effect on chemical reaction dynamics do not extrapolate well close to 

the solvent regime, where novel reactivity has been observed. It is important to keep 

in mind that the effect of SCF solvents on solubilities, transport properties and the 

kinetics of the elementary reactions may differ substantially from that expected for 

non-SCF solvents. An understanding of these effects is needed for the design and 

optimisation of reaction processes at supercritical conditions (SC). Gaining an 

understanding of supercritical solvent effects on reaction kinetics from experiment 

alone is very difficult because of the problems associated with observing the 

supercritical phase, the reaction rate in such non-ideal environments and 

characterising their effect on rate constant separately. However, molecular simulation 

is an appropriate tool for such investigations because these problems do not arise, and 

system parameters can be precisely controlled and manipulated. 

Using molecular simulation techniques for that purpose overcomes major 

problems associated with experimental studies at SC and gives us the opportunity to 

study microscopic properties such as solution microstructure and their connection to 

macroscopic properties. Indeed, we believe the main reason for the lack of 

quantitative prediction of reactivity at SC is the lack of molecular simulation studies 

connecting microscopic quantities, which are difficult to measure or hard to predict 

accurately, to macroscopic properties. Potential ways for affecting reactivity at SC is 

local density augmentation and preferential solvation resulting from the differential 

stabilization of reactants, products and activated complexes according to the strength 
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of their molecular asymmetries with respect to the solvent. As these properties as well 

as the observed innovative reactivity are maximal in the solvent’s compressible 

regime, they must be accounted for in any computational treatment of such SCF 

solvent systems. Crucial to the success of any computational study is the 

implementation of efficient molecular simulation techniques that manage the solvent 

structure near to the critical point and this was the main task of our work. 

1.2 SUMMARY OF CHAPTERS 

The overall goal of this work is to explore the solvent properties of CO2 at the 

molecular level. The first goal of our work was to gain insight into the solvent 

properties of a pure SCF close to the critical point and test the validity of molecular 

simulations methods. Supercritical carbon dioxide (scCO2) was well described by 

an Elementary Physical model. Calculations have been performed with, molecular 

dynamics/Monte Carlo simulation in canonical ensemble. The validity of molecular 

simulation methods has been tested in the supercritical region.  

The second goal was to gain a solid understanding of the structure of 

supercritical phase. The tendency of the solvent to form cluster or cavities around 

different types of solutes was studied extensively. We used the Kirkwood-Buff 

fluctuation theory to examine the solutions structures. 

The following objectives are met in achieving the goals 

• Testing the outcome of our developed Monte Carlo code with literature data 

• Comparing the outcomes of Monte Carlo vice molecular dynamics in the 

supercritical region 

• Finding the dependence of CO2 solvent structure on density close to 

supercritical isotherm 
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• Understanding the contributing factors to structure of molecules in the 

supercritical CO2 

• Comparing simulated thermodynamic properties with experimental values 

• Comparing the solution process of methane and water solutes in CO2 solvent 

• Examining the role of CO2 solvent conditions on solute solution environment 

• Developing a theory between molecular structure and solution process. 

Our work is being presented in three parts, theory, simulation and results. In theory 

part, we present the background and techniques used in meeting the above objectives. 

In simulation part, we present the implementation of the molecular methods with 

technical details and covering programming issues. In results, we present and discuss 

the outcome of our work by exploring the goals.  

In first part, following this introduction, we provide a framework of high 

pressure reaction kinetics in chapter two. In chapter three, a detailed description of 

molecular simulation techniques is given for MC and MD. An introduction of 

supercritical fluids, their properties and their features are presented in chapter four. 

Subsequently, a review on molecular models (potentials) in supercritical conditions is 

presented. We discuss the importance of the potential model with a review of different 

types of potential models produced in literature for carbon dioxide, water and 

methane.  

Computational methods over molecular systems and their implementations for 

our system are given in second part. We discuss molecular simulation and molecular 

techniques from the simple to the complex in chapter five. We cover programming 

issues and their implementation in chapter six.  It also includes the technical details of 

simulation for the initialization, equilibration and production periods.  
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Finally, third part presents the results. In chapter seven, we verify our Monte 

Carlo program. In the same chapter we accommodate also a discussion about the 

efficiency of molecular dynamics and Monte Carlo in the supercritical region. In 

chapter eight, we examine the dependence of solvent structure on solvent conditions. 

We show how solvent structures changes with density of CO2 close to the critical 

isotherm and we explore the solvent structure on its thermodynamic properties. We 

examined the solvent structure on isothermal compressibility, isochoric heat capacity 

and diffusivity. In chapter nine, we explore the structure of infinitely diluted solutes in 

supercritical carbon dioxide. The water and methane have been chosen to play the role 

of solutes. Using the Kirkwood-Buff theory, the solution microenvironment of these 

solutes is predicted from the structure of solute molecule and the solvent conditions. 

The predictions are verified by against experimental data. Further, we address the 

effect of the addition of methane or water on the thermodynamic properties of the 

infinite diluted mixture. We compare the thermodynamics properties with those of 

pure carbon dioxide at chapter eight. 

Finally, in chapter ten, we summarize conclusions of previous chapters. We 

outline a theory explaining the supercritical nature of solution. We also discuss future 

research opportunities.  
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Part I .Theory 
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2 EFFECT OF PRESSURE ON REACTIONS 

his section gives a detailed introduction to transition state theory and 

pressure effects on chemical reactions. These concepts and tools are used 

frequently in supercritical fluids reactions studies. T 
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2.1 INTRODUCTION 

The main advantage in application of high pressure to gas phase reactions is 

seen by the increase of concentrations of the reactants due to compression. Thus, the 

reaction rates increase as well as the equilibrium conversions, since pressure affects 

directly the equilibrium (Gao et al., 2003; Peck et al., 1989). With knowledge of the 

P, V, T-behaviour of the system one can calculate this pressure effect, which is 

defined as ‘thermodynamic pressure effect’. On the other hand, it is less known that 

the rate constant coefficient of a reaction also depends on pressure. This pressure 

effect is called ‘kinetic pressure effect’ (Brennecke and Chateauneuf, 1999; Viana 

and Reis, 1996). 

However, the kinetic approach to elucidate the mechanism of a chemical 

reaction involves the measurement of reaction rates and rate constants as a function of 

many chemical and physical variables. Much emphasis is usually placed on the 

activation parameters obtained from the temperature dependence of the reaction. The 

accuracy of the suggested reaction mechanism is likely to increase with increasing 

number of variables covered during such investigations (Tiltscher and Hofmann, 

1987). This is one of the reasons why pressure has been included as a kinetic (or 

thermodynamic) variable in an increasing number of studies over the past decades 

(Jenner, 2002; Tiltscher and Hofmann, 1987). Such additional information may assist 

not only in the elucidation of the intrinsic reaction mechanism, but it may also reveal 

new fundamental aspects of the studied systems, and thus add to the understanding of 

underlying principles of reaction kinetics. Pressure is a fundamental physical property 

that influences the values of different thermodynamic and kinetic parameters. In the 

same way as temperature dependence studies tell us something about the energetics of 
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the process, pressure-dependence studies reveal information on the volume profile of 

the process. 

2.2 THEORETICAL BACKGROUND  

The theories available to chemists to explain and predict the effects of pressure 

on reactions, whether the objective of the investigation is a synthetic one or 

mechanistic one, are thermodynamics and applications of thermodynamics principles 

within the absolute reaction rate (Atkins, 1994; Moore and Pearson, 1982). We are 

interested in how the effect of pressure manifests itself on the equilibrium constant K 

and the free Gibbs energy °G , for the reaction (difference between products-

reactants), or upon the kinetic constant k and the free Gibbs energy of activation ΔG
 

(difference between transition state-reactants). If the effect of pressure is to increase 

the magnitude of K or reduce ΔG, the reaction will have a greater yield or a faster 

reaction rate respectively. Qualitatively it can be said that these effects can arise from 

the differing pressure effects on the chemical potentials of the reactants and products 

(equilibrium), or reactants and transition-state (kinetics). The approach favoured by 

many is one of considering the volume per mol of initial state, the transition-state and 

when appropriate, the product state. A reaction in which the transition-state has a 

smaller volume than the initial state is accelerated by application of pressure. Further, 

if the product has a different volume from the initial state, pressure will induce a 

change in product yield. 

To be more rigorous we must first remember that the volume of a chemical 

species in a solution is invariably different from that from the pure substance, where 

the volume per mole can readily be established from the density. The quantity we are 

interested in is the partial molar volume, which may be thought of as the effective 

volume per mole of a species when its intrinsic volume is modified by the influence 
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of solvation (McQuarrie and Simon, 1999). It is represented by V for a mole 

substance in the literature but is also written, as VA, m for the partial molar volume of 

A. 

 ,
, B

A A m
A pT m

VV V
n

 
    

  (2.1) 

 
where the partial derivative signifies the change of volume when the amount of 

substance A is increased in a binary system (A and B present) and this change is 

considered at constant temperature, pressure and amount of B. 

Chemical reactions under supercritical conditions usually require relatively 

high pressures due to the nature of the supercritical state and the kind of fluids 

commonly used (Tucker and Maddox, 1998). Consequently, pressure effects on 

chemical equilibrium and chemical reaction rates have to be accounted for (Asano and 

Lenoble, 1978; Drljaca et al., 1998; Vaneldik et al., 1989; Vaneldik and Klärner, 

2002). 

The effect of pressure on the mole fraction-based equilibrium constant Kx of a 

chemical reaction depends on the reaction volume ∆Vr of a reaction, i.e. the difference 

between the partial molar volumes of the product(s) and those of the reactant(s) 

(Baiker, 1999) 

 
,

ln X r

T x

K V
P RT

      
 (2.2) 

The effect of pressure on kinetics is mostly described in the context of transition state 

theory and a supposed reaction pathway. According to this theory, the mole fraction 

based rate equilibrium constant xk  of an elementary reaction depends on the 

activation volume #V , i.e. the difference between the partial molar volume of the 

activated complex and the sum of those of the reactant(s)(Baiker, 1999) 
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#

,

ln X

T x

k V
P RT

      
 (2.3) 

It is worth repeating again that Xk  or XK is the constant expressed in mole 

fraction units, T and P are the system absolute temperature and pressure, R is the 

universal gas constant and x is the concentration in mole fractions units. The 

following formula is used to convert between conventional concentration (mol/L) 

units Ck  or CK  and mole fraction concentration units Xk or XK  

 (1 ...)( / )
C

X
W

kk
M       (2.4) 

 
where  is the mixture fluid density (expressed as g L-1) at the temperature and 

pressure of the kinetic measurement and WM  is the average molecular weight of all 

the species in the mixture. In that case   

 

#

,

(1 ...)#

,

#

,

ln

ln( ( / ) )

ln (1 ...)

X

T x

C W

T x

C

T C

k V
P RT

k MV
RT P

kV
RT P

 

  

  



       

 
    

         

 (2.5) 

 

the pressure effect on the rate constant is a function of isothermal compressibility. As 

we mentioned before the pressure of a gas phase reaction has a direct effect on the 

rate of the reaction simply as the concentrations of the species are directly 

proportional to the pressure (‘thermodynamic pressure effect’)(Tiltscher and 

Hofmann, 1987). For a reaction in solution, altering the pressure on the solvent does 

                                                
 
 For a general reaction 

   αΑ  +  βΒ  ... Product  
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not affect the concentration yet it is found that at high pressures reaction rates are 

affected (‘kinetic pressure effect’)(Brennecke and Chateauneuf, 1999). The change in 

the rate is attributed to a change in the rate constant as a result change in pressure. 

Although pressure is inevitably the experimental controlled variable, sometimes the 

analysis of rate data can be facilitated by examining how the rate constant varies with 

the solvent density in that case 

 
,, , ,

ln ln lnC C C

T CT C T C T C

k k k
P P V


 

                       
 (2.6) 

 
where V is the molar volume. 

2.3 HISTORICAL DEVELOPMENTS AND MODERN KINETICS  

The transition state (TS) is the critical configuration of a reaction system 

situated at the highest point of the most favourable reaction path on the potential 

energy surface. It is regarded as critical in the sense that if it is attained the system 

will have a high probability of continuing reaction to completion. The concept of the 

transition state was first broached by M.Polanyi and M.G.Evans (Evans and Polanyi, 

1935) and by H.Eyring (Eyring, 1935), both in 1935. Since that time, numerous pieces 

of work on chemical kinetics and dynamics, both experimental and theoretical, have 

been published in implicit or explicit reference to the concept. The theory of absolute 

reaction rates gained popularity under the name ‘transition-state theory’. Admittedly, 

however the theory has never been considered to be complete. A major reason for this 

is that little reliance could be place on the methods used to guess the characteristic 

properties (i.e. geometry, vibrational frequencies and activation energy) of the TS. 

Transition-state theory (TST) is a convenient and powerful formalism for explaining 

and interpreting the kinetics of elementary reactions. This theory views a chemical 
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reaction as occurring via a transition-state species (in many presentations the term 

‘transition state’ is used synonymously with activated complex). It is better to be 

avoided, however, because firstly the word ‘complex’ implies an entity, which has a 

chemically significant lifetime, which the transition state does not, and secondly, the 

collision complex, which may be formed when two molecules collide, is often called 

an activated complex. The chemical reaction rate is evaluated by statistical-

mechanical methods. 

The earliest work on reaction rate theory came from Arrhenius (Arrhenius, 

1889). Arrhenius was interested in why activation barriers arose in chemical 

reactions. He considered a simple reaction: 

 A  B   

and proposed that if one looked at a chemical system containing A and B, there were 

two kinds of A molecules in the system: reactive molecules (i.e., A molecules that had 

the right properties to react), and unreactive A molecules (i.e. A molecules did not 

have the right properties to react).At the time the work was done, there were many 

empirical rules to predict how rates vary with temperature. Arrhenius was the first 

person to derive a theoretical expression. When the expression was found to fit data, 

Arrhenius’ expression, which was renamed Arrhenius’ law, was universally adopted 

in kinetics. 

 ( )BE k T
ok k e   (2.7) 

 
Arrhenius was never able to provide a model for ko in the above expression. 

Fortunately, Trauntz (Trautz, 1918) and Lewis (Lewis, 1918) independently proposed 

the collision theory of reactions. The objective of collision theory is to use knowledge 

of molecular collisions to predict the pre-exponential ko. Trautz and Lewis proposed a 
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model to do just that. The model builds on Arrhenius’ concept that only “hot” 

molecules can react (Moore and Pearson, 1982). The model assumes that the rate of 

reaction is equal to the rate of collisions of molecules. The main weakness of the 

Trautz-Lewis version of collision theory is that it ignores the fact that one needs a 

special geometry in order for a reaction to occur. Given this weakness the Trautz-

Lewis model, it does not always give a good prediction of the rate. Another weakness 

of the model is that it does not explain activation barriers. Neither Arrhenius, nor 

Trautz, nor Lewis was able to explain why reactants needed to be “hot” in order for 

reaction to occur. Trautz and Lewis just assumed - without explaining this assumption 

- that reactions had barriers. It was transition state theory that came later to cover this 

gap. 

2.4 BASIC TRANSITION-STATE THEORY 

2.4.1 The concept of transition-state theory 
The original transition-state theory developed by Eyring as the principal 

contributor is based on two fundamentals postulates. One first assumption the 

existence of a molecular aggregate called the ‘activated complex’ T , which may 

have a geometry corresponding to that of the transition state. Second, the hypothetical 

complex T is assumed to be in quasi-equilibrium with the initial state during the 

entire course of a reaction. A substitution reaction, for example, can be understood by 

a scheme as follows: 

A  +  BC   T# AB  +  C  

The activated complex was regarded as being ‘similar to an ordinary molecule, 

possessing all the usual thermodynamic properties, with the exception that the motion 

in one direction, i.e., along the reaction coordinate, would lead to decomposition at a 
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finite rate (Moore and Pearson, 1982). The transition-state theory is based on the 

application of statistical mechanics to both reactants and activated complexes. 

2.4.2 Transition-state theory and potential energy 
In the process of reaction, the reacting molecules come sufficiently close 

together so the interactions are set up between the atoms involved. The reacting 

molecules and products are described in terms of all atoms in a single unit made up of 

all the reacting species and products. For example the reaction 

CH3
.  +  C2H6       CH4  +  C2H5

.
 

is described in terms of the unit 

  

 

 

 

rather than in terms of as the independent species 

 

When the configuration changes the potential energy (P.E.) of the reaction also 

changes. The potential energy surface summarises these changes. A description of 

what happens during the reaction rests on knowledge of the potential energy surface, 

as the actual derivation of the theory. 

The potential energy surface and its properties can be given for a reaction expressed 

by a general form 

 

Where A, B…are polyatomic molecules. This would give an n-dimensional surface. 

Fortunately, all the properties of an n-dimensional surface, relevant to kinetics, can be 

      H H      H 

H C- - - - - - C C H 

      H            H     H     H 

Reaction unit 

CH3
.  ,  C2H6 , CH4    , C2H5

.

αΑ  +  βΒ  ...         T# Product
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exemplified by a three dimensional surface which much easier to visualize and to 

describe. A three dimensional surface describes the reaction  

A  +  BC   T# AB  +  C  

where A,B and C are atoms and a linear approach of A to BC and recession of C is 

assumed, implying a linear configuration for the ‘reaction unit’ 

A- - - - - - B- - - - - -C
r1   r2

  r3     

in which all configurations can be described by the distances r1and r2, with r3=r1+r2 

There is no interaction between A and B or between A and C when A is at 

large distances from BC, and so the potential energy is simply that of BC at its 

equilibrium internuclear distance. When the distance between A and BC decreases an 

attractive interaction is set up, and this interaction is different at different distances. A 

quantum mechanical calculation (Martin and Martin J.Field, 2000) gives the potential 

energy increases as the distance apart, and shows that the potential energy increases at 

the distance r1 decreases. 

Eventually the interactions between A and B become comparable to those 

between B and C, and this corresponds to configurations where r1 and r2 are 

comparable. The potential energy for these configurations can be calculated. 

Finally, the interactions between A and B become greater than those between 

B and C. The configurations reached as C recedes from AB and r2 becomes greater 

than r1 result in progressively decreasing potential energies. When C is at very large 

distances from AB the potential energy of interaction C and AB is zero, and the 

potential energy becomes virtually that for AB at its equilibrium internuclear distance. 
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These configurational changes take place at constant total energy so that there 

is an interconversion of kinetic and potential energy resulting from the changes in 

configuration. 

The calculations involved can be summarised in the form of a table such as: 

 

 

The potential energy surface considered in this section are based on the Born-

Oppenheimer separation of nuclear and electronic motion (Born and Oppenheimer, 

1927; Hirst, 1985). For a non-linear molecule, consisting of N atoms, the potential 

energy surface depends on 3N-6 independent coordinates (Martin and Martin J.Field, 

2000), and depicts how the potential energy changes as relative coordinates of the 

atomic nuclei involved in the chemical reaction are varied. An analytic function, 

which represents a potential energy surface, is called potential energy function. 

Understanding the relationship between properties of the potential energy surface and 

the behaviour of the chemical reaction is a central issue in chemical kinetics. 

Let us go back to considering the simplest possible reaction, that of an atom, 

A, reacting with a diatomic, BC. Then only two distances, ABr  and BCr  are needed to 

specify completely the arrangement of the atoms and so the P.E. surface is just a 

function of two variables, and we have a chance of being able to visualize it. In  

Figure 2-1, the reactants, A+BC, are found in the upper left part of the surface 

( ABr large, BCr  equilibrium separation). The products, AB+C, are found in the lower 

right part of the diagram ( BCr large, ACr  equilibrium separation). The form of the 

surface is two valleys meeting at right angles, one starting at the products and one at 

the reactants. As we ‘walk’ up the valley away from the reactants the valley floor rises 

up; the same thing happens as we ‘walk’ away from the products. 

r1 r2 P.E
. . .
. . .
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Figure 2-1: Perspective view of the PE surface for the A+BCAB+C reaction. The arrangement 
consisting of the separated atoms is the corner coming towards us, while that corresponding to 
the atoms being compressed together is at rear. Note how the cross-sections at large rAB and rBC 
are identical to the usual PE curves for diatomics. Modified figure from Hirst work  (Hirst, 
1985). 

There are many path ways of going from reactants to products to produce on 

the P.E. surface. The transition state path is a special one. It involves going up the 

floor of the reactant valley, crossing over the pass at its lowest point and then exiting 

along the floor of the product valley. It is the same path that involves the least 

expenditure of energy and, we shall see, this is the pathway which the reaction takes. 

The point of highest energy on this pathway is called the transition state; it 

          rBC 
reactants 

    rAB 
products 
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corresponds to a molecule in which the A-B bond is partly made and the B-C bond is 

partly broken. 

2.5 THERMODYNAMIC FORMULATION 

Transition-state theory rate constant 

Thermodynamics applied to chemical reactions yields useful thermodynamics 

quantities such as G (change in Gibbs free energy of the chemical system), 

H (change in enthalpy or heat of the reaction) and S (change in entropy). These 

quantities refer to the starting and ending states of the system. A general reaction is 

represented by the form 

 

The transition state is in equilibrium with the reactants, and the rate of the reaction is 

the rate of the product formation from the transition state, given by 

...1  B
a

AC
B

T
BAp CCK

h
TkC

h
Tk

dt
dC

adt
dC

r    

So the rate constant (concentration based) can be expressed as 

 TST B
c C

k Tk K
h

   (2.8) 

where κ is the transmission coefficient (01 and always positive (Asano and 

Lenoble, 1978)), Bk  is Boltzmann’s constant (1.381 * 10-23 J K-1) , T is absolute 

temperature, h is Planck’s constant (6.626 * 10-34 J s), and CK   is the concentration-

based equilibrium constant for the reaction involving the reactants and the transition 

state. Equation (2.8) uses the concentration-based equilibrium constant, which 

combines all chemical and physical effects between the reaction species and the 

solvent. As already stated above, one of the most important things is to locate the 

transition state along the reaction coordinate, which corresponds to maximum energy 

αΑ  +  βΒ  ...         T# Product
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along the reaction coordinate. The energy required to overcome the barrier 

(corresponding to the transition state) is the activation energy #G . 

The activation energy is connected to the equilibrium constant though the expression 

   GKRT cln  (2.9) 

The activation Gibbs free energy change can be written in terms of enthalpy (or 

internal energy) change and entropy change 

# # # #G E P V T S       or # # #G H T S      

Since #( / )TG P V    we have 

 #

, ,

lnln (1 ...)CX

T x T C

kkV RT
P P

  

                
 (2.10) 

Gas-phase reaction 

When a chemical reaction takes place in the gas phase and considered ideal, 

the free energy barrier is completely determined by the interactions among the 

reactants. In that case, there is no pressure dependence on kinetic constant and always 

the activation volume value is zero in equation 2.10 

Reaction in Solution  

When a reaction takes place in solution, however, the forces exerted by the 

solvent molecules also influenced the free energy barrier. For reactions in solution, it 

is usually assumed that the solute follows the same reaction path as it would if the 

same reaction were to occur in the gas phase, and that the transition state is taken to 

be located at some point along this path, most frequently at the free energy maximum. 

Additionally, the solute reaction path is nearly always identified as the reactive degree 

of freedom (Tucker and Truhlar, 1990) and then κTST is taken to be one. Note that this 

set of assumptions, known as the equilibrium solvation approximation, is equivalent 

to assuming that the solvent rapidly readjusts in response to changes in the solute, 
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such that at all times during the course of the reaction the solvent remains in 

equilibrium with the reacting solute (Voth and Hochstrasser, 1996). Within this 

approximation, the activation energy G  can be written as 

# # #( ) ( )R R
solv solvG U G U G        

where the free energy at each location along the solute reaction path is given by the 

sum of the potential energy, U, of the isolated solute at this location plus the 

equilibrium solvation free energy of the solute at this location solvG . The equilibrium 

solvation free energy depends on the pressure and for reaction in solution V   is 

usually different from zero. Accurate measurements of the kinetic constant k at 

different pressures (generally in the pressure range 0-150 MPa) lead to a curve 

( )k f P whose slope gives V  . Viana made a literature review for the common 

used mathematical approximations for ( )k f P (Viana and Reis, 1996). The 

conventional interpretation of the activation volume #V  is that it is an intrinsic 

solute property (or solute plus local solvent property for solution phase reactions), 

which represents the difference in the effective volumes of the transition state and 

reactant complexes, like the Figure 2-2. 

Energy Volume

X X

final state

      ground state

     ΔVR  ΔV#

transition state

final state

      ground state

transition state

ΔG#

  ΔG

 

Figure 2-2: Energy and volume profile of a general reaction 
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To see the relationship between #V and pressure, consider the case where the 

transition state volume is smaller than that of the reactants #V . In this case an increase 

in pressure would shift the assumed equilibrium between the transition state and 

reactants toward the transition state, increasing the rate as given by equation (2.10) 

when # 0V  . Although there is in principle nothing wrong with the activation 

volume approach, application of its traditional interpretation to the pressure 

dependence of reaction rates to SCFs can be misleading and our discussion of these 

effects is better to be given in terms of the pressure dependence of the activation 

barriers, # ( )G P . 

The problem arises, as we can see from Figure 2-3, the traditional 

interpretation of the activation neglects the fact that other solvent properties, such as 

the dielectric constant, can be extremely pressure sensitive in compressible SCFs. 

 

Figure 2-3: Free energy sketches for reaction coordinates representing two different responses to 
density.(a) preferential solvation of the transition state as density increases, leading to a net 
decrease in ΔG# with increasing density. In (b) the reactants and products are preferentially 
solvated by increased density. Modified figure from Levert Sengers’ book (Levert Sengers, 1998). 

When these properties affect the solvation of the transition state and reactants 

differently, the activation energy will vary rapidly with pressure, causing large 

changes in the reaction rate, which are not representative of an actual volume effect. 
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Combining equations (2.8) and (2.9), the reaction rate is related to G by the 

equation: 

 
#

expTST B
c

k T Gk
h RT


 

  
 

 (2.11) 

Equation (2.11) predicts that a decrease in G leads to an increase in TST
ck  

Now, the equilibrium constant accessible from classical thermodynamics, 
  is 

related to c
 as. 

  
#

1 ...#
#c

 



   
 


 (2.12) 

where   i
ia a ,   i

i


  ,αi, γi and νi are activity, the activity coefficient and 

stoichiometric coefficient (e.g., α, β...), respectively, for component i, and ρ is the 

molar density of the reacting mixture. We can then write the transition state theory as 

  1 ...TST B
c

k Tk
h

 



 


  






 (2.13) 

or as 

  1 ...

TST
c B

x
k k Tk

h


 







  


 


 (2.14) 

if the concentration - independent units (e.g., mole fraction) are desired for the rate 

constant. One could also develop an alternative expression for the transition state 

theory constant that employs fugacity coefficients rather than activity coefficients 

(Clifford, 1999). This alternative form of the rate constant is convenient to use when 

an accurate analytical equation of state is available for the fluid phase. The rate 

constant in equation (2.14) can be written as 

                                                
 
 from the relationship αi=xiγi= i iC 


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  1 ...

TST
c B

x x
k k Tk

h  



  

    (2.15) 
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3 MOLECULAR SIMULATION 

he two sets of methods for computer simulations of molecular fluids are : 

Monte Carlo and molecular dynamics. In both cases the simulations are 

performed on a relatively small number of particles (atoms, ions, and/or 

molecules) of the order of 100 < N < 10,000 confined in a periodic box, or simulation 

supercell. The interparticle interactions are represented by pair potentials, and it is 

generally assumed that the total potential energy of the system can be described as a 

sum of these pair interactions. Very large numbers of particle configurations are 

generated on a computer in both methods, and, with the help of statistical mechanics, 

many useful thermodynamic and structural properties of the fluid (pressure, 

temperature, internal energy, heat capacity, radial distribution functions, etc.) can then 

be directly calculated from this microscopic information about instantaneous atomic 

positions and velocities. 

Before embarking on a description of the molecular modelling techniques, we 

should first briefly explain the role of computer simulations in general. What is 

exactly molecular simulation? Molecular simulation is a computational ‘experiment’ 

conducted on a molecular model. The Molecular model is built on the given sufficient 

knowledge about the intermolecular interactions. Clearly, it would be very nice if we 

could obtain essentially exact results for a given model system, without having to rely 

on approximate theories. However, we can compare the calculated properties of a 

model system with those of an experimental system: if the two disagree, our model is 

inadequate, i.e. we have to improve on our estimate of the intermolecular interactions. 

Rephrasing, the validity of any simulation will rest on the suitability and accuracy of 

the equations/parameters used for the intermolecular potentials. Molecular mechanics 

T 
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deals with that subject and many forms have been developed for describing the 

interparticle potentials known as force fields. 
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3.1 MOLECULAR MECHANICS 

The goal of molecular mechanics is to predict the detailed structure and 

physical properties of molecules. Examples of physical properties that can be 

calculated include enthalpies of formation, entropies, dipole moments, and strain 

energies. Molecular mechanics calculates the energy of a molecule and then the bond 

lengths and angles are adjusted to obtain the minimum energy structure. 

3.1.1 Interparticle Interactions 
The most fundamental approach is to attempt to calculate the interparticle 

interactions from first principles by solving the electronic Schrödinger equation 

 H E    (3.1) 

 
for the electronic energy at each nuclear configuration. Many methods for doing this 

are available but three of the more commonly used types are passed upon density 

functional theory, molecular orbital theory and valence bond theory. The last two 

are first principles or ab initio methods in the sense that they attempt to solve the 

Schrödinger equation with as few assumptions as possible. Although these methods 

can give very accurate results in many circumstances, they are expensive and hence 

cheaper alternatives have been developed. 

One way of making progress is to drop the restriction of performing first-

principles calculations and seek ways of simplifying the ab initio methods outlined 

above. These so called semi-empirical methods have the same overall formalism as 

that of the ab initio but they approximate various time-consuming parts of the 

calculation with simpler approaches. Of course, because approximations have been 

introduced, the methods must be calibrated to ensure that the results they produce are 

meaningful. This often means that the values of various empirical parameters in the 
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methods have to be chosen so that the results of the calculations agree with the results 

of accurate ab initio quantum mechanical calculations. Semi-emperical versions of all 

the ab initio methods mentioned above exist. 

A second and even cheaper approach is to employ an entirely empirical 

potential energy function. This consists of choosing an analytic form for the function, 

which is to represent the potential energy surface for the system and then 

parametrizing the function so that the energies that it produces agree with 

experimental data or with the results of accurate ab initio quantum mechanical 

calculations. 

3.1.2 Force Fields 
Simulation methods that make use of force fields, parameterised on the basis 

of quantum mechanical calculations and / or experimental measurements, offer an 

immediate and practical alternative for the prediction of the properties of molecular 

fluids. The quality of a given force field model depends on its simplicity and 

transferability beyond the set of conditions that were used for the parameterisation. 

Transferability may imply that the force field parameters for a given interaction site 

can be used in different molecules (e.g. the parameters used to describe a methyl 

group should be applicable in many organic molecules) or that the force field is 

transferable to different state points (e.g. pressure, temperature or composition) and to 

different properties (e.g. thermodynamic, structural or transport). In general, for pure 

components, the transferability of force fields to different state points is tested against 

vapour-liquid equilibrium (VLE), heats of vaporization, second virial coefficients 

(McQuarrie and Simon, 1999) and the prediction of mixture properties. Generally, 

simulations of molecules and molecular mixtures in a continuum use either united 

atom (UA) models or atomistic (AA) models (Jorgensen et al., 1996; Jorgensen et al., 
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1983; Jorgensen et al., 1984). In the united atom approximation, a molecule or a 

group of atoms is treated as a single unit, represented by a Van der Waals sphere with 

a charge point. Atomistic models represent every atom in a molecule. Each atom is 

usually modelled as a Van der Waals sphere with a point charge. According to 

Molecular mechanics, molecular model is the definition of how a molecule interacts 

with itself and other molecules. The total potential energy is composed in two parts 

intramolecular energy (how a molecule interacts with itself) and intermolecular 

energy (how a molecule interacts with other molecules. 

A molecule can possess different kinds of energy such as bond and thermal 

energy. Molecular mechanics calculates the internal energy of a molecule, the energy 

due to the geometry or conformation of a molecule. Energy is minimized in nature, 

and the conformation of a molecule that is favoured is the lowest energy 

conformation. Knowledge of the conformation of a molecule is important because the 

structure of a molecule often has a great effect on its reactivity.   Molecular mechanics 

assumes the internal energy of a molecule to arise from a few, specific interactions 

within a molecule. These interactions include the stretching or compressing of bonds 

beyond their equilibrium lengths and angles, torsional effects of twisting about single 

bonds, the Van der Waals attractions or repulsions of atoms that come close together, 

and the electrostatic interactions between partial charges in a molecule due to polar 

bonds. To quantify the contribution of each, these interactions can be modelled by a 

potential function that gives the energy of the interaction as a function of distance, 

angle, or charge. The total internal energy of a molecule can be written as a sum of 

the energies of the interactions: 

 intramolecular str bend str-bend oop tor VdW qqE  = E + E  + E  + E  + E  + E  + E  (3.2) 
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The bond stretching, bending, stretch-bend, out of plane, and torsion interactions are 

called bonded interactions (intramolecular) because the atoms involved must be 

directly bonded or bonded to a common atom. The van der Waals and electrostatic 

(qq) interactions are between non-bonded atoms. In addition, Waals and electrostatic 

(qq) interactions exist between atoms of different molecules. The energy, coming 

from atoms between different molecules, is called intermolecular energy. It is 

important to realize that the force field is not absolute, in that not all the interactions 

listed in Equation (3.2) may be necessary to predict accurately the energy of a system, 

every time we are considering the most important forces. The total energy of a 

molecular system is given by the sum of the intermolecular and intramolecular 

interactions. 

 total intramolecular intermolecular E =E  + E  (3.3) 

3.2 STATISTICAL MECHANICS 

3.2.1 Introduction 
The central question in Statistical Mechanics can be phrased as follows: if 

particles (atoms, molecules, electrons…) obey certain microscopic laws with 

specified interparticle interactions, what are the observable properties of a 

macroscopic system containing a large number of such particles? 

According to thermodynamics, a system containing a single pure substance at 

equilibrium can be completely characterized by three independent variables, say E, V, 

and N, where E is energy of the system, V the Volume and N represents the number 

of molecules, generally of the order of 1024. According to classical mechanics, the 

dynamics of each particle is defined by its three coordinates (e.g. x, y, z) and three 

momenta (e.g. px, py, pz) (Figure 3-1), so the previous system would require 

immensely greater detail: all the generalized coordinates q1 (t),q2(t)…qn (t) and 
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conjugate momenta p1 (t)…pn (t), each a function of time, would have to be specified 

and n the number of atoms. The number of degrees of freedom, n, is, for an assembly 

of atoms, equal to 3N, for systems composed of molecules, internal degrees of 

freedom (rotations and vibrations) have to be included as well. Thus, even the 

simplest thermodynamic system corresponds to a mechanical system of immense 

complexity. Presenting a diatomic molecule in gas phase, we need a trajectory of 

momenta values (p1, p2) and a trajectory with positions (q1, q2). For recording the p 

and q we need to record three coordinates in space x, y and z, like Figure 3-1. 

q
 q1 p2

q2

p

p1

 

Figure 3-1: A diatomic molecule in phase space. The position and motion of the particle are 
presented by a point with coordinates (q1x, q1y, q1z, q2x, q2y, q2z, p1x, p1y, p1z, p2x, p2y, p2z) in a 2-
dimensional phase space. 

A quasi-geometric representation of the dynamical state of a mechanical 

system, known as phase space specified by the vector x=q, p, has proved to be 

invaluable in classical statistical mechanics. The phase space for a system having n 

degrees of freedom is the composite of the n-dimensional configuration space and the 

n-dimensional momentum space. A point in its 2n-dimensional phase space represents 

the instanteous state of the system. The representative point traces out a trajectory in 

the hypothetical space as the system changes with time in accordance with the laws of 

mechanics. Given the point in phase space representing the state of the system at time 

t, the future (as well as the past) trajectory is, in principle, completely and uniquely 

determined. Only in the case n=1, a system having but one degree of freedom, can the 
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phase space be explicitly diagrammed as in Figure 3-2. The trajectory in two-

dimensional phase space, representing the time development of the system, 

corresponds to the set of parametric equations. 

q=q(t), p=p(t). 

For a linear harmonic oscillator with constant energy ε the phase-space trajectory 

corresponds to an ellipse in the p-q plan (Blinder, 1969) 


22

22 kq
m

p  

 

 

 

 

Figure 3-2: Trajectory in two-dimensional phase space 

The analogous representation of more complex system mechanical systems, even with 

n~1024, introduces no additional conceptual difficulties, notwithstanding the 

multidimensionality of the corresponding phase space. The trajectory is, in the general 

case, determined by the 2n equations 

qi=qi(t), pi=pi(t) i=1…n. 

These are, in turn, determined by classical Hamiltonian’s equations of motion  

.

i
i

Hq
p





, 
.

i
i

Hp
q


 


  i=1…n 

in conjugation with 2n initial values qi(0), pi(0). The Hamiltonian function 

H (q1…qn,p1…pn) for a multidimensional system will be for convenience, 

abbreviated H (p,q) and dot denotes the time derivative. It expresses the total energy 

of an isolated system as a function of the coordinates and momenta of the constituent 

        p

q
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particles. This is essentially equivalent to the system’s total energy, kinetic plus 

potential, and can be written as 

 2

1

1( , ) ( )
2

N

i i i i
i i

V K U E
m

    p r p rH  (3.4) 

Note that the Hamiltonian is a function of 6N independent variables, the 3N particle 

momenta and the 3N particle positions. Integration of these equations of motion 

yields the trajectory 

 t t 0x =x (x )  (3.5) 

where x0 specifies the state of the system at time t=0. Since the laws of classical 

mechanics are deterministic, the subsequent trajectory from a given point is uniquely 

determined. Therefore, a trajectory in phase space cannot intersect itself. 

3.2.2 The concept of the ensemble 
 The variables N, V and E are sufficient to specify a thermodynamic system 

macroscopically, but insufficient to determine the 2n-time dependent variables in 

order to specify the microscopic state. Moreover, the microscopic mechanical 

variables can be modified continuously in such way as to leave the macroscopic state 

unaltered. It must exist an infinite number of microscopic states, which are compatible 

with the macroscopic specification of a thermodynamic system. Gibbs (McQuarrie 

and Simon, 1999) denoted as an ‘ensemble’ a sufficiently representative set of 

microscopic states corresponding to a specified macroscopic state. For conceptual 

purposes an ensemble can be defined as a very large number (sometimes taken to the 

infinity) of systems, each being a replica on a macroscopic scale of a given 

thermodynamic system. 

It is useful to discuss a simple example before discuss further the concept of 

the ensemble. Consider using a thermocouple (i.e. a digital thermometer) to measure 
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the average temperature of a small beaker of water. In principle, a thermocouple can 

be used to measure the water temperature to arbitrary accuracy. However, when one 

does the measurement, one often finds that the thermocouple reading is noisy because 

of eddies in the beaker. In order to get very accurate readings, therefore one has to 

find a way to average over all the noise. One can use a simple beaker and measure the 

time average. However, an alternative idea is to take a large number of beakers that 

are identical to the first, place all of them in identical conditions put a thermocouple in 

each beaker, and average over the readings of all of the thermocouples as illustrated in 

Figure 3-3 

 

 

 

 

 

 

 

Figure 3-3: A diagram showing how the use of multiple thermocouples can be used to lower the 
noise in a temperature measurement 

In the same way, one can calculate the thermodynamic properties of a system by a 

time average or by creating a series of systems that are identical to the first and then 

averaging over all the systems. A basic concept in this calculation is that the system 

samples all the macroscopic states consistent with the constraints we have imposed to 

control the system. We perform a multitude N of independent measurements for some 

property X: 

 
1

1 N

obs i
i

X X
N 

   (3.6) 
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where Xi is the value during the i-th measurement whose time duration is very short –

so short, in fact, that during the i-th measurement the system can be considered to be 

in only one microscopic state. Then we can partition the sum as 

 (1
 N

X obs Number of times state ν is observed in the N observations)  X  

where Xv value of property X in microstate v. The term in the squared brackets is the 

probability or weight for finding the system during the course of the measurements in 

state ν. Remember, we believe that after a long time, all states are visited (ergodic 

hypothesis). We give the probability or fraction of time spent in state ν the symbol Pν 

and write 

 


 XXPX obs  

The averaging operation (i.e., the weight summation over Xν), indicated by the 

pointed brackets, X , is called an ensemble average. An ensemble is the assembly of 

all possible microstates – all states consistent with the constraints with which we 

characterize the system macroscopically. 

The idea that we observe the ensemble average, X , arises from the view in 

which measurements are performed over a long time, and that due to the flow of the 

system through phase space, the time average is the same as the ensemble average*. 

The equivalence of a time average and an ensemble average, while sounding 

reasonable, is not at all trivial. Dynamical systems that obey this equivalence are said 

to be ergodic or satisfy the ergodic hypothesis. These concepts can be sum up into two 

postulates. 

                                                
 
* Maxwell (1860) and Boltzmann (1872) showed that one can compute a macroscopic property of a 
system X as the time average and latter Gibbs (1890) showed that one could replace the time average 
with an ensemble ‘average’ of X. 
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Postulate 1: Ergodic Hypothesis: Given enough time, a system will sample all 

microstates consistent with the constraints imposed. That is, time averages are 

equivalent to ensemble averages. Mathematically, we have 

 1X lim
i i

i
i ix ii

i

x
x t

t



 
  



 (3.7) 

where i  is the probability density of state i. 
Postulate 2: Equal a Priori Probabilities: All microstates having the same 

energy are equally probable. Mathematically, 

 ( )i i iE   (3.8) 

3.2.3 Ensembles 
Ensembles are classified according to the constraints imposed on the 

corresponding thermodynamic system. The four most important types are the 

microcanonical ensemble NVE, the canonical ensemble NVT, isothermal-isobaric 

NPT and the grand canonical ensemble µVT. The microcanonical ensemble is the 

assembly of all states with fixed total energy E, and fixed size, usually specified by 

the number of molecules, N, and volume V. Such a system cannot exchange either 

matter or energy with its surroundings. Neither can it expand or contract in volume. 

The canonical ensemble corresponds to an assembly of all microstates with 

fixed N and V. The energy can fluctuate; however, the system is kept at equilibrium 

by being in contact with a heat bath. The canonical ensemble, in which the 

temperature, number of molecules and volume are imposed, is used for monophasic 

fluids when density is known. The predicted average properties are then average 

energy, pressure and chemical potential. 

In the isothermal-isobaric or NPT ensemble, pressure is imposed instead of 

volume of the system. Usually, NPT is used to predict fluid density. This ensemble is 
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used, for instance, when the properties of a fluid are to be determined at known 

pressure and temperature. The grand canonical ensemble is defined as the assembly of 

all states that has a fixed value of µ, V and T, where µ is the chemical potential. The 

grand canonical ensemble is the ensemble that is most adapted to adsorption in 

microporous solids, where the temperature, the volume, and the chemical of each 

species are the imposed variables. 

The ensembles summarised in Table 3-1 occur in two broad categories. The 

microcanonical, canonical and isothermal–isobaric ensembles describe closed systems 

for which there is no change in the number of particles. In contrast, the grand 

canonical ensemble is an open system in which the number of particles can change. 

Table 3-1: Types of Ensembles 
Ensemble Constraints 

Microcanonical N, V, E 

Canonical N, V, T 

Grand Canonical , V, T 

Isothermal – Isobaric N, P, T 

 Beside common average properties like density, pressure or energy, the 

analysis of their fluctuations allows to determine thermo physical properties like the 

heat capacity, the compressibility, the thermal expansion coefficient or the Joule-

Thomson coefficient (McQuarrie and Simon, 1999). 

3.2.4 Mathematical foundation 
The basic idea of statistical mechanics is, therefore, that during a 

measurement, every microscopic state or fluctuation that is possible does in fact 

occur, and observed properties are actually the averages from all the microscopic 

states. To quantify this idea, we need to know something about the probability or 

distribution of the various microscopic states. 
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The instantaneous density of representative points can be characterized by a 

distribution function ρ (q1…qn, p1…pn, t) abbreviated for convenience ρ(x). To 

calculate thermodynamic properties of macroscopic systems, in accordance to 

ergodic hypothesis, it is necessary to determine explicitly the distribution function ρ 

(x) for the appropriate ensemble. The distribution function is time –independent, so 

 0
t




 (3.9) 

Hence, if the probability density distribution function in a particular ensemble is ρ, the 

average of a property, X, can be written as an integral 

 ( ) ( )X d X      (3.10) 

where  are the ensemble variables, which will include the coordinates and the 

momenta of the particles, and d  indicates the volume element for a 

multidimensional integration over these variables. 

Practically, there are two main methods to simulate statistical ensembles. The 

first is though molecular dynamics, which solves the equations of motion, and the 

second is Monte Carlo simulation, in which a statistical method is used. Although the 

total energy appearing above is the sum of the kinetic energy and potential energy, 

only the latter needs to be provided as an explicit function of coordinates through a 

suitable intermolecular potential energy model for Monte Carlo simulation. 

3.3 MONTE CARLO SIMULATION 

3.3.1 Principles 
Consider the integral I, of a function f(x) over a region [a,b]: 
                                                
 
 The thermodynamic 1... ... ( , , ) ( , )nX dq dp q p t X q p    properties estimating by the 

ensemble average as and the time average as (X  
0

1, ) ( ), ( )q p dtX q t p t



   
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 ( )
b

a

Ι f x dx   (3.11) 

A normal way to estimate the integral, for well-behaved functions, would be to divide 

the region [a, b] into n equally spaced slices, each of width Δ=(b-a)/n and then use a 

standard integration formula of the type 

 
0

( )
n

i
i

I w f a i


     (3.12) 

where the wi are weights whose values depend upon the formula being used. For the 

well-known Euler formula, these would be 1 except at the end points, where they 

would be ½. 

 

Figure 3-4: Integration sampling between a and b 

The basis of the Monte Carlo approach is to realize that, instead of using a regular 

discretization of the integration variable, as in equation (3.12) , it is possible to use a 

stochastic method in which the values of the integration variable are chosen at 

random. Let n denote the number of trials and xi (with i=1,…, n) the values between 

a and b. The integral can be evaluated as 

 
1

( )
n

i
i

I f x


   (3.13) 

where, as before Δ=(b-a)/n, but this time it represents the average distance between 

integration points rather than the exact distance.This formula works reasonably well 
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for functions whose values do not change too much from one place to another in the 

integration range. For a function whose values vary greatly or are peaked in certain 

areas, the formula will be inefficient because the values of the function at many of the 

randomly chosen integration points will contribute negligibly to the integral. In these 

cases, it is more useful to be able to choose values of x that are concentrated in areas 

in which the function will be significant. In any case, the problem we have to solve is 

to find a manner for producing random number between [a, b]. We have to 

invent a random generator. 

One way to produce random number is by using roulette. In our problem for a 

‘well-behaved’ function we can use roulette with discrete numbers between [a, b] in 

order to produce L random numbers. We denote )(xf  the unweighted average of 

f(x) over the integral [a, b], and it is clear, as L (many trials with the roulette!) the 

value (b-a) )(xf should yield the proper value. For ‘non-well-behaved’ functions, 

we can use a biased roulette   for generating the random number. 

f(x)

0 1 2 3 4 5 6 7 8 9 x

f(x)

0 1 2 3 4 5 6 7 8 9 x
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Figure 3-5: Unbiased and biased sampling for Monte Carlo integration. The biased roulette is not 
proportional in size, different sized portions. 
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However, when one wants to estimate an integral for a ‘non-well-behaved’ it 

does not need each time a biased roulette. To do this the integral of equation above 

can be written as  

 ( ) ( )
( )

b

a

f xI x dx
x




 
  

 
  (3.14) 

 
where ρ(x) is a probability density function that is large where it is thought that the 

function will be large. The integral can now be approximated by choosing values of 

the integration variable randomly from ρ(x) in the range [a, b], instead of from the 

uniform distribution, and averaging over the values of ƒ (xi)/ρ (xi) that are obtained 

 
1

( )1
( )

n
i

i i

f xI
n x

   (3.15) 

this formula is the same as equation (3.13) in the case of a uniform distribution  

follows because the probability distribution function for the uniform distribution is 

1/(b-a). The use of a function ρ in this way to enhance sampling in certain regions is 

known as importance sampling. Choosing perfect weight function is same as solving 

integral 

The stochastic method outlined above cannot usually compete with numerical 

methods of the type given in equation (3.12) if there is a small number of integration 

variables. However, the number of function evaluations required by simple 

discretization schemes for the estimation of an integral becomes prohibitively large as 

the number of dimensions, Ndim, increases. To see this, suppose that n points are 

chosen for the discretization in each direction, and then the number of function 

evaluations required is Ndim. It is in these cases that stochastic methods are often the 

only realistic approaches for tackling the problem. 
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The integrals that are of interest in thermodynamics are usually 

multidimensional. Usually, a property, X, of the system is a function of the 3N 

coordinates of the atoms (Sadus, 2007). 

3.3.2 Metropolis Monte Carlo Algorithm 
As we mentioned in the previous section, the integrals that are of interest in 

thermodynamics are usually multidimensional. As an example, consider a property, 

X, of the system that is a function of the 3N coordinates of the atoms R, only. The 

ensemble average of the property in the canonical ensemble is then the ratio of two 

multidimensional integrals: 

 
 

 
( ) exp ( ) /( )

exp ( ) / )
B

B

dRX R U R k T
X

dR U R k T








 (3.16) 

where U is the potential energy of the system. This equation can be written in a form 

reminiscent of equation  (3.14) by employing the probability density distribution 

function for the canonical ensemble, NVT . Thus  

 ( ) ( )NVTX dRX R R   (3.17) 

If, somehow (and this is the difficult part!), it is possible to choose configurations for 

the system drawn from the function, NVT  then the average, X  can be calculated 

using a formula analogous to equation(3.15), i.e. 

 
1 1

1 1 ( )
n n

i I
I I

X X X R
n n 

    (3.18) 

Where n is the number of configurations generated in the simulation and RI is a vector 

of the coordinates of the atoms at each configuration. The solution was given by the 

Metropolis Monte Carlo method. The Monte Carlo for integration was formalized in 

the late 1940s by N. Metropolis, J. von Neumann and S. Ulam, but a Monte Carlo 

method for generating configurations drawn from a canonical distribution was 
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introduced by Metropolis (Allen and Tildsley, 1989) and co-workers in the early 

1950s to study atomic systems. In outline, it is as follows: 

1. Choose an initial configuration for the system, Ro, and calculate its potential 

energy Uo. Set I=0. 

2. Generate, at random, a new configuration for the system, RJ, from the current 

configuration. Metropolis et al. used a recipe in which the probability, PIJ, of 

generating the state J from state I was equal to the probability, PJI, of 

generating the state I from the state J. They also insisted that the method 

should allow, in practice, every state to be accessible from all other possible 

states, if not as a result of a single, then as a result of a sequence of changes. 

3. Calculate the potential energy of the new state ,UJ. 

4. If the difference in the potential energy of the two states, UJ -UI, is less than 

zero, choose state J as the new configuration, i.e. set RJ to RI+1. 

5. If (UJ-UI)>0 fetch a random number in the range (0,1). If the number is less 

than exp-(UJ-UI)/kBT accept the new configuration, otherwise reject it and 

keep the old one. 

6. Accumulate any averages that are required using equation (3.18) and the new 

configuration, RI+1. Note that even if the ‘new’ configuration is the same as 

the old one, it still must be re-used if proper averages are to be obtained. 

7. Increment I to I+1 and return to step 2 for as many steps are desired in the 

simulation. 

3.4 MOLECULAR DYNAMICS 

In contrast to the Monte Carlo procedure, molecular dynamics simulation 

follows the time evolution of a molecular system by numerically integrating Newton’s 

equations of motion for a set of N particles (Allen and Tildsley, 1989). The result is a 
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trajectory file that specifies how the positions and velocities of particles vary with 

time. In many respects, MC and MD are equivalent technique (periodic boundary 

conditions, potentials). Identical results should be obtained for structural analysis and 

thermodynamic properties. However, thermodynamics properties can be studied only 

with MD, either at equilibrium or far from equilibrium. 

3.5 KIRKWOOD-BUFF THEORY 

The Kirkwood-Buff (KB) theory of solution (Kang and Smith, 2007) (often 

called fluctuation theory) employs the grand canonical ensemble to relate 

macroscopic properties, such as the derivatives of the chemical potentials with respect 

to concentrations, the isothermal compressibility, and the partial molar volumes, to 

microscopic properties in the form of spatial integrals involving the radial distribution 

function. This theory allows one to obtain information regarding some microscopic 

characteristics of multicomponent mixtures from measurable macroscopic 

thermodynamic quantities. However, despite its attractiveness, the KB theory was 

rarely used, until the evolution of computer simulation for two main reasons: 

(1) The lack of precise data (in particular regarding the composition 

dependence of the chemical potentials) and 

(2) The difficulty to obtain simulated radial distribution functions 

We will use the KB theory to examine the solution behaviour with regard to local 

composition. The KB theory correlates the local structure with thermodynamic 

properties .The mathematical formulation of KB theory is given at sections 4.5.3 and 

8.4.  
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4 SUPERCRITICAL FLUIDS 

n the last decade, supercritical fluids more and more have been proved as 

environmentally  benign media for chemical and related processes. Many new 

processes and products have been developed, using the inherent physical and 

chemical properties of supercritical fluids. We interested in 

1. Determining the behaviour of pure SCF solvents, as such information provides 

a backdrop against which to understand solvation in these fluids. 

2. Predicting solvation structure in SCFs, as these properties critically effect 

solute reaction, and 

3. Examining how such SCF effects alter chemical reaction kinetics. 

 

I 
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4.1 INTRODUCTION 

In 1869, Thomas Andrews (Andrews, 1869) first recognized the presence of 

the critical point, which gave birth to a new world of critical phenomena and 

supercritical fluid science. A SCF is defined as a substance above its critical 

temperature CT  and critical pressure CP . This definition should arguably include the 

clause “but below the pressure required for condensation into a solid”, however this is 

commonly omitted as the pressure required to condense a SCF into a solid is generally 

impracticably high. However, we will refer to any fluid above its critical temperature 

as ‘supercritical’ regardless of its pressure or density. The critical point represents 

the highest temperature and pressure at which the substance can exist as a vapour 

and liquid in equilibrium. The phenomenon can be easily explained with reference to 

the phase diagram for pure carbon dioxide (Figure 4-1). This shows the areas where 

carbon dioxide exists as a gas, liquid, solid or as a SCF. The curves represent the 

temperatures and pressures where two phases coexist in equilibrium (at the triple 

point, the three phases coexist). The gas–liquid coexistence curve is known as the 

boiling curve. If we move upwards along the boiling curve, increasing both 

temperature and pressure, then the liquid becomes less dense due to thermal 

expansion and the gas becomes denser as the pressure rises (Licence et al., 2004). 

Eventually, the densities of the two phases converge and become identical, the 

distinction between gas and liquid disappears, and the boiling curve comes to an end 

at the critical point. The critical point for carbon dioxide occurs at a pressure of 7.38 

MPa and a temperature of 304.128 K. The Table 4-1 and the Figure 4-2 lists the 

critical data of SCFs most frequently used in chemical reactions. A single 

supercritical fluid can be tuned to mimic the properties (dielectric constant, solubility) 
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of a wide range of conventional solvents by merely varying the pressure, which is one 

of the more prominent advantages of supercritical fluids. 

 

Figure 4-1: Phase diagram for pure carbon dioxide. 
 
Table 4-1: Critical Data (temperature, pressure, and density) of supercritical fluids most 
frequently used in chemical reactions(source:(Reid et al., 1977)) 

 

solvent Tc,K
a P c, MPaa ρc, kg m-3 b

CO2 304.04 7.375 735

CH4 190.44 4.600 452

CH3OH 512.54 8.092 322

C2H6 305.34 4.884 235

C2H4 282.24 5.041 468

CH3CH2OH 513.84 6.137 162.6

C3H8 369.74 4.250 272

CH2CH2CH3 364.74 4.601 276

CH3CH2CH2OH 536.74 5.170 217

BUTANE 698.3 3.796 275

C5H12 496.44 3.374 203

C6H14 507.24 2.969 214

H2 306.12 1.284 233

H2S 373.14 8.937 273
a The number of digits given indicates the estimated accuracy of this quantity.b Although values for
the critical density are given to three decimal places, they cannot be assumed accurate to better than
a few percent.

 
Reactions under supercritical conditions have been used for large-scale 

industrial production (Vaneldik and Klärner, 2002) for most of the twentieth century, 

but the application of supercritical fluids in the synthesis of complex material is only 
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just emerging. Research in this field has been particularly active in the last decade of 

the 20th century, because the special properties of SCFs make them attractive solvents 

for modern synthetic chemistry. Moreover, these processes also promise economic 

and environmental effects. The prerequisites for this success however, are a sound 

knowledge of physico-chemical properties, phenomena in supercritical mixtures and 

the availability of chemical engineering data. This requires an effective exchange of 

knowledge between a large number of branches of science. Werner summarises in a 

review the recent advances with supercritical fluids which cover the advances in a 

large number of branches of science (Hauthal, 2001). 
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Figure 4-2: The critical points of selected solvents in table 4-1. 

4.2 SUPERCRITICAL FLUID PROPERTIES 

Using supercritical fluids, such as supercritical carbon dioxide, as a reaction 

medium has gained considerable attention in recent years, due to the environmental 

benefits and to the favourable processing conditions. These benefits are due to in part 

to the increased diffusivity, lowered viscosity, and enhanced mass transfer, as 

compared to traditional organic liquids solvents. However, chemical reactions are 

expected to behave differently in supercritical fluids than in the gas or in traditional 
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liquid phase solvents (Clifford, 1999; Levert Sengers, 1998; Tucker and Maddox, 

1998). If we are able to understand and accurately model this behaviour, then we may 

be able to increase reaction rates, enhance selectivity, and develop more efficient 

separation process. 

To gain insights into the reactions taking place in supercritical fluids, one 

should first know the characteristics of supercritical fluids. The key characteristics of 

supercritical fluids are the inhomogeneity in space and the fluctuation in time. It is 

believed; when a solute molecule with attractive solute–solvent interactions is placed 

in a supercritical fluid near the critical point, fluid solvent molecules quickly gather 

around the solute molecule due to solvent attractive interaction. 

The inhomogeneity thus caused in supercritical fluids is quite pronounced as 

compared with ordinary liquids. This process is often called ‘solvation’ or 

‘clustering’. It is also called ‘density augmentation’ or ‘enhanced local composition’. 

The definitions of these terms are rather ambiguous. In our work, the attention is 

focused on the effect of these phenomena on the chemical reactions of the solute 

molecule. Therefore, the term “solvation” is better than clustering because clustering 

sometimes implies the gathering of an enormous number of solvent molecules around 

the solute molecule. When the term clustering is used in our study, it means the 

enhancement of solvent density within the first two or three solvation shells. Such a 

group of molecules consisting of a solute molecule and solvent molecules in the 

nearby solvation shells is called a cluster. Although the fluctuation in the solvation 

structure with time has attracted less attention (Kajimoto, 1999) so far, the coupling of 

such fluctuation with dynamic processes in supercritical fluids will be an attractive 

target of future research. 
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The local density enhancement of a fluid, in particular, is expected to 

influence chemical reactions in supercritical environments. In supercritical fluids, the 

solvent in the region around a solute molecule will typically be higher than the mean 

fluid density, and this deviation is often on the order of 50% to 300% (Song et al., 

2000). This density enhancement, as well as selective partitioning between solute 

clusters or the surrounding solvent, can potentially influence the reaction dynamics. 

The inhomogenities and cluster effect on chemical reactions is not well understood at 

present. Studies have to be done to examine the lifetime of clusters and compare it 

with transition state lifetime.  

       A. Phase solid-gas         B. Phase supercritical          C. phase liquid 

                                                              Fluid 

 

 

 

   Solute      Solvent 

Figure 4-3: Reagent clustering in a supercritical fluid. 

Figure 4-3.(A) demonstrates a two phase system in which a solid solute is 

under pressure of a gas. Interactions between the molecules are very weak and no 

significant solvation occurs. In (C) the system is in liquid phase, the bulk density is 

high, offering high solvation and we therefore see a single phase. (B) represents SCF 

conditions. The bulk density is moderate, higher than the gas phase but much lower 

than of a liquid. Solvent clustering around the solute molecules does however mean 

that the local density is relatively high and therefore a moderate solvation is offered 

and we observe a one phase system for low concentration solutions. The 

characteristics of clusters vary with temperature a schematically shown in Figure 4-4. 
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Near the critical point at CT T , the solvent fluid molecules themselves are apt to 

form clusters of extremely large size. 

The effect of pressure on the rate of chemical reactions was originally revealed 

in solutions under pressure (Asano and Lenoble, 1978; Tiltscher and Hofmann, 1987; 

Vaneldik and Klärner, 2002). These researches were initiated much earlier than 

researches in supercritical solvents. Elementary chemical reactions are generally 

classified according to whether or not the reacting complex must surmount a potential 

energy barrier in the course of reaction. Reactions for which this is true are called 

activated processes, while those for which it is not are called diffusion controlled 

processes. The features of supercritical fluids originate mainly from the 

intermolecular interactions can affect both of the processes. It is obvious that the 

study on intermolecular interactions in SCF is very important to their applications. 

 

Figure 4-4: Different character of clusters formed in different temperature ranges. Near the 
critical temperature, the solvent molecules tend to form a large cluster even without a solute 
molecule. At higher temperatures, the solute molecule with strong attractive interaction is 
necessary to trigger the clustering of solvent molecules (Reprinted from Baker’s work (Baiker, 
1999). 
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4.3 CARBON DIOXIDE 

4.3.1 Background 
Although scCO2 has received much attention within academic and chemical 

industrial laboratories both as a green alternative to conventional organic solvent and 

as a simple, linear triatomic molecular system, the solvent behaviour of scCO2 is not 

well understood on a microscopic level. The non-toxicity, low cost, abundance, and 

ease of recycling are some of the key attributes of this environmentally benign 

solvent. The low critical temperature of CO2 (Tc =31.1°C) ensures that scCO2 is a safe 

solvent for biomolecular separations, pharmaceutical applications, and in other 

thermally labile systems. CO2 is a major by-product in several industrial processes, 

and in terms of availability, it is almost as readily abundant as H2O. Additionally, 

because CO2 is recognized as a “green house” gas, recycling of by-product gas and its 

industrial utilization are an important mode of reducing emissions into the 

atmosphere. Over the past two decades, there are several areas where CO2 research 

has progressed with developments in applications such as CO2-based dry cleaning, 

polymer synthesis, extraction and separation of natural products, chemical 

transformations, synthesis and dispersion of nanoparticles, and materials processing. 

However, the large-scale utilization of this solvent suffers from the lack of a 

molecular level understanding of the solvation phenomenon in CO2. How is CO2 

classified as a solvent? What are the basic characteristics concerning solvation in 

CO2, and how is it different from common solvents such as hexane and H2O? What 

sort of molecular systems can CO2 dissolve, and what types of interactions 

predominate? These are some of the important issues that need to be addressed before 

it is possible to expand the use of CO2 as an industrial solvent. 
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Computational approaches provide excellent insight into understanding the 

microscopic solute-solvent interactions, microscopic properties and microscopic 

properties. The development of accurate computational studies for solute solubility 

and reactions rates in liquid and supercritical carbon dioxide requires a model for 

intermolecular interactions between this solvent and any solutes. Once a model for 

carbon dioxide has been selected, it is important to characterize it with its predictions 

of the equation of state, the liquid-vapour coexistence curve, and the critical 

properties. 

4.3.2 Equation of State for Carbon Dioxide 
The current standard National Institute of Standards and Technology (NIST) 

equation of state for CO2 was developed by Span and Wagner (Span and Wagner, 

1996). For reference, Table 4-2 gives the critical point and triple point conditions for 

CO2. The critical temperature for CO2 is slightly above room temperature. 

Table 4-2: Critical point and triple point for CO2. 
T/K  P/MPa ρg/(Kg/m3) ρg/(Kg/m3)

Critical Point 304.128 7.3773 467.6 467.6

Triple Point 216.59 0.5180 13.73 1178.5
 

4.3.3 Models for Carbon Dioxide  
Most frequently, simulations of model fluids at near- and supercritical 

conditions have been performed without the knowledge of the model’s vapour-liquid 

equilibrium envelope, i.e., by simply taking the state conditions from the phase 

diagrams of the real substances. The recent development of powerful new simulation 

techniques for the direct determination of phase equilibria, such as the Gibbs 

Ensemble Monte Carlo (Panagiotopoulos, 1987), the Gibbs-Duhem intergration 

(Kofke, 1993), and the Grand Canonical Monte Carlo with histogram re-weighting 

method (Kiyohara et al., 1998) make it possible to determine the phase diagram of 
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fluid models with unprecedented accuracy and computational efficiency (Errington et 

al., 1998). 

A large number of efforts has been devoted to the development of an accurate 

potential model for carbon dioxide. The simplest model is the spherical model with 

only short-range interactions. This kind of models has great advantage of 

computational efficiency. On the other hand, several atomic models have been 

introduced. In those, many single-site Lennard-Jones parameters have been used to 

describe the carbon dioxide. Most common choices correspond to fits to viscosity data  

(model: S1) (Reid et al., 1977) or (model:S2) (Nicolas et al., 1979) from a direct fit to 

the critical temperature and density. The Lennard-Jones parameters adopted usually 

for molecular fluids determined from the method proposed by Nicolas et al (Nicolas 

et al., 1979) or the Reid et al for . More recently, Virnau et al. (Virnau et al., 2004) 

present a coarse-grained model for CO2 which behaves well with the combination 

with n-alkanes in supercritical solution. The solvent molecule CO2 is represented by a 

single particle and the solvent particles interact via a truncated and shifted Lennard-

Jones potential, 
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 (4.1) 

where r denotes the distance between particles and the cut-off radius of the potential. 

Table 4-3: Parameters for united models of CO2 

model United 
Atom

Sigma               
Å

Epsilon  
Kcal/mol

Charge   
e

CO2 3.720 0.4692 0

CO2 3.910 0.4477 0

S1

S2

 



                                                                                                                                    55 

Beyond the simple united atom approaches, there are three potential models designed 

to fit the properties of CO2: a 2-point, a 3-point model and 5-point model. The “two-

center Lennard-Jones quadrapole” model developed by Möller and Fischer (Moller 

and Fischer, 1994) fits empirical saturation data to two Lennard-Jones sites and a 

quadraupole. The model of Möller and Fischer was used by Colina et al (Colina et al., 

2003) to describe the thermal properties of supercritical carbon dioxide, except in the 

extend critical region. The Murthy (Murthy et al., 1983) potential was used by Iwai 

group (Higashi et al., 2000) to describe the density dependence of structure of 

supercritical carbon dioxide along an isotherm. The 5-point model of Murthy, O’Shea 

and McDonald (Maillet et al., 1998; Murthy et al., 1983) uses three Lennard-Jones 

sites and five Coulombic sites along the molecular axis. The “elementary physical 

model” (EPM) of Harris and Yung (Harris and Yung, 1995) simplifies the 5-point 

model by using three Lennard-Jones sites each with a Coulombic charge. The EPM 

was optimized to get the correct pressure at 239 K, and it has a gas phase quadrapole 

of 4.3 × 10−26 statcoulomb cm2 near the experimental value of 4.1 × 10−26 statcoulomb 

cm2. The model is designed to be either completely rigid or have a flexible bond. The 

rigid EPM fits the critical point within 3%. Harris and Yung rescaled the EPM using 

corresponding states theory to obtain a model (EPM2) that matched the critical 

properties of CO2. EPM and EPM2 use a combination Lennard Jones site and point 

charge at each atom centre. 

Table 4-4: Parameters for EPM2 and EPM model 
model Atom Sigma               

Å
Epsilon  
Kcal/mol

Charge   
e

C 2.757 0.0559 +0.6512 e
O 3.033 0.1600 -0.3256 e

C 2.785 0.0576 +0.6645 e
O 3.064 0.1649 -0.3322 e

EPM2

EPM
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Accordingly site-site interaction models are the most popular choice for 

carbon dioxide. A number of the potential models for carbon dioxide can be regarded 

as EPM based models. The first variation of the EPM model was proposed by Potoff 

and Siepmann (Potoff and Siepmann, 2001) and is well known with the abbreviation 

TraPPE. Zhang and Duan (Zhang and Duan, 2005) proposed another version of EPM 

model by optimizing its parameters by obtaining a better predictability of phase 

behaviour. Potoff (Potoff and Siepmann, 2001) proposed a model for carbon dioxide 

with using only the term of power of six in Lennard Jones function, which shows 

improved accuracies for the PVT properties at high densities. All of the EMP based 

models have the angle of OCO fixed as 180o .Based on their structural experimental 

studies, Zhang and Duan (Zhang and Duan, 2005) proposed a new molecular potential 

abbreviated as EPM-M and EPM2-M with the only difference from EPM model the 

intermolecular bond angle which is 174.2o. Up to date the EPM2 is the widely used 

potential, although developed over ten years ago (Nieto-Draghi et al., 2007). 

4.4 OTHER COMMON SUPERCRITICAL FLUIDS 

4.4.1 Fluoroform 

Fluoroform (CHF3) has a conveniently located critical point ( CT = 26.1°C, 

CP = 4.8 MPa), is non-toxic and relatively benign to the environment, and is available 

in high purity at modest cost. For these reasons, fluoroform has served as the 

prototype for polar supercritical solvents in numerous experimental studies over the 

past decade. Several simulation models of fluoroform have already been developed 

(Hloucha and Deiters, 1998; Lisal and Vacek, 1996; Potter et al., 1997; Song et al., 

2002) and successfully applied to study a number of properties of the  fluid (Okazaki 

et al., 1995; Song et al., 2002). The model proposed by Song et al is a 2-site model 

developed for use in simulations in the near critical regime. The model was optimized 
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to reproduce the critical point and the liquid-vapour coexistence curve of the real fluid 

using the Gibbs Ensemble Monte Carlo method. 

The model is a Lennard-Jones potential plus a Coulombic interaction (Song et 

al., 2002). The 2-site model of fluoroform has been used by Song and Maroncelli 

(Song and Maroncelli, 2003) to examine the role of electrostatic forces on density 

augmentation on supercritical fluoroform. 

Table 4-5: Model parameters of the 2-site model for CHF3 molecule. The distance between the 2 
sites is 1.670 Å  

site Sigma               
Å

Epsilon  
Kcal/mol

Charge      
e

1 3.500 0.1699 +0.275e
2 3.500 0.1699 +0.275e

 

4.4.2 Ethane 
After methane, ethane is the second-largest component of natural gas. Ethane 

is isolated on an industrial scale from natural gas, and as a by-product of petroleum 

refining. Ethane is of great interest in separation industry. Many molecular potential 

have been developed for ethane for different conditions, the most commonly used is 

the UA-OPLS model developed by Jorgensen et al (Jorgensen et al., 1984) and 

TraPPe model developed by Siepmann group (Martin and Siepmann, 1998). Ethane 

(CH3CH3) has a critical point ( CT = 32.18°C, CP = 4.8718 MPa) close to fluoroform. 

To date all of the developed potentials have been tested across their ability to predict 

the critical point (Nath et al., 1998). The TraPPe model gives good agreement with 

experimental critical properties. The 2-site model parameters of the TraPPe model are 

given in the Table 4-6 

Table 4-6: Model parameters of the 2-site model for CH3CH3 molecule. The distance between the 
2 sites is 1.54 Å 

site Sigma               
Å

Epsilon  
Kcal/mol

Charge      
e

1 3.750 0.1947 0
2 3.750 0.1947 0
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4.4.3 Water 
Water at elevated and supercritical temperatures is found at the bottom of the 

oceans as well as in electric power plants (Ulrich Franck, 1987). Supercritical water 

(SCW) can be a suitable reaction medium for reactions usually carried out in organic 

solvents. The SCW except the well-known advantages (Levert Sengers, 1998) using a 

supercritical fluid as a reaction medium also influences the rates of chemical 

reactions. During a reaction, the transition state may be higher or lower polarity than 

the initial state. A high relative dielectric constant lowers the activation energy of the 

reaction of a transition state of higher polarity than the initial state. By variation of the 

relative dielectric constant, achieved by adjusting the temperature and pressure, the 

reaction rates maybe controlled. As a consequence, these reactions show a high 

activation volume. Fundamental chemical properties, which are well-known in 

aqueous chemistry at 298 K, are much less available for SCW 

( cT =647.13 , 30.322 /c g cm  , 220.55 cP bar ) solutions (Reid et al., 1977). 

Modelling the behaviour of water has been the subject of extensive research. 

To describe the molecular structure of water, the most widely used effective pair 

potential models use rigid multiple interaction sites with partial charges, such as the 

three-site TIP3P (Jorgensen, 1981), SPC (de Pablo et al., 1990), and SPC/E 

(Berendsen et al., 1987), the four-site TIP4P (Jorgensen et al., 1983), and the five-site 

ST2 (Stillinger and Rahman, 1974) models, whose merits have been well documented 

(Paschek, 2004). In particular, the three-site TIP3P, SPC, and SPC/E models are 

commonly used in biochemical simulations, in part because of their reasonable 

descriptions of solvation and dielectric properties. The model parameters for TIP3 are 

given in Table 4-7 . The TIP3 have chosen to be used in this study, due to its 

compatibility with EPM2. 
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Table 4-7: Model parameters of TIP3 model. 
model Atom Sigma               

Å
Epsilon  
Kcal/mol

Charge   
e

H 0 0.0000 0.417 e
O 3.151 0.1521 -0.834 eTIP3

 

4.4.4 Methane 
During the last two decades, the properties of fluid methane have been studied 

by several groups using various experimental and theoretical techniques. The reason 

for this long-lasting interest is that methane is the major constituent of natural gas. 

Note that natural gas is one of the most promising fuels in reducing carbon dioxide 

emissions. Further, it is much cheaper and environmental friendly than petroleum-

based fuels. Methane is one of the simplest polyatomic molecules. Its spherical 

symmetry allows it to be modelled as a single site molecule with more accuracy than 

almost any other polyatomic molecule. Modelled as a single site molecule the 

majority of potentials for methane are based Lennard Jones potentials. The OPLS-UA 

potential proposed by Jorgensen (Jorgensen et al., 1984) is the one widely is in use. 

An alternative generic effective pair potential is given by the Bunckingham (Martin 

and Siepmann, 1998) potential, but it is not easily compatible with Lennard-Jones in 

case of mixture simulations. 

Table 4-8: Model parameters of OPLS-AA model. 
model Atom Sigma               

Å
Epsilon  
Kcal/mol

Charge   
e

H 2.500 0.0300 -0.24 e
C 3.500 0.0660 0.06 eOPLS-AA

 

The most common used potential is the all-atom (AA) five-centre semi 

empirical Lennard–Jones (LJ) potentials, with or without electrostatic interactions, 

proposed by Jorgensen et al. (Jorgensen et al., 1996) and Murad–Gubbins (MG) 

(Quirke and Gubbins, 1996), provide the most accurate description of the liquid 

compared with other site–site potentials (Skarmoutsos et al., 2005). The OPLS-AA 
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model is choosen for this study as it is compatible with EPM2. Its parameters are 

given in Table 4-8. 

4.5 SUPERCRITICAL FLUID KINETICS 

Chemical processes in SCFs can be controlled by a variety of factors, such as 

enhanced transport coefficients, increased reactant solubilities, facilitated separation, 

and strong “kinetic pressure” effect on the rate constants. For any given reaction, 

several aforementioned factors can be affecting the reaction rate simultaneously, 

which makes the analysis of chemical processes in SCFs rather involved. Therefore, it 

is important to study simple, well-defined reactions, where it is possible to isolate a 

few dominant factors influencing the reactivity. In this regard, the investigation of 

chemical equilibria in SCFs provides a particularly appealing area of research, since 

the values of the equilibrium constants are largely determined by the structural aspects 

of supercritical solvation.  

Pc

L
S

V

Tc T  

Figure 4-5: Schematic illustration of regions of the phase diagram; near-critical regime (dark 
area); compressible-regime (light dark area); supercritical regime (slanted hatch) 
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At present, however, the properties of SCFs and their effects on solute reaction are not 

well understood, and the way is open for computation to provide the underlying 

insight necessary for efficient development of SCF technologies. 

When T exceeds Tc, there can be no phase transition between the vapour and liquid 

phases. Instead, as the pressure is increased the fluid density is changed continuously 

from gas-like to liquid-like densities. Consequently, density-dependent solvent 

properties, such as the dielectric constant and the viscosity, will also vary 

continuously. Pressure thus provides direct control of the fluid’s solvating properties. 

This tunability is more effective when large changes in density accompany small 

changes in pressure, i.e., when the isothermal compressibility is large. Coincidentally, 

the compressibility of a fluid diverges as its critical point is approached, and there 

exists a region of the phase diagram surrounding the critical point (with the restriction 

that T>Tc) within which the fluid’s compressibility is anomalously large (Figure 4-5). 

Evidentially, it is in this compressible regime that pressure-controlled tunability of the 

solvent properties is maximised, and it is thus of primary interest to understand solute 

reactivity in this solvent regime.  

4.5.1 Effect of density on Equilibrium Constant 

The effect of pressure (P) on reaction equilibrium constant (Kc), which is the 

ratio of forward and reverse rate constants f rk k , is expressed in terms of the reaction 

volume rxnV  : 

 c rxn
T i

T

K V
P RT

 
       

  (4.2) 

 

                                                
 

 For a general reaction 

      kf 

     kr 
    γΓ  +  δΔ  ...    αΑ  +  βΒ  ... 
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where i   is the sum of the stoichiometric coefficients for the reaction, and T   is 

the isothermal compressibility. The reaction volume is defined as the sum of the 

products of the stoichiometric coefficient and the partial molar volume iV  for each 

species in the reaction. The reaction volume is 

 ( ...) ( ...)rxn A BV V V aV V           (4.3) 

The difficulty in using (4.2) and (4.3) with experimental data is that 

experimental measurements of partial molar volumes are challenging (Guo and 

Akgerman, 1998). Measuring partial molar volumes is very difficult because of the 

problems associated with observing the supercritical phase the low concentrations and 

short lifetimes of highly reactive species. An alternative approach to experimental 

measurements of partial molar volumes or equilibrium constants is theoretical 

determination of these quantities. 

4.5.2 Effect of density on Kinetic Constant 
In conventional transition state theory, the pressure dependence of a rate 

constant is related to the activation volume as it described by Equation (2.5) 

 
#

,

ln (1 ...)C

T C

k V
P RT

  

          
 (4.4) 

where T  is the isothermal compressibility of the solvent. The activation volume is 

calculated as the difference in the partial molar volumes of the transition state (“TS”) 

and the reactants. 

 #
TS A BV V aV V     (4.5) 

The partial molar volumes can be calculated like the equilibrium constant case from 

the pair correlation functions for infinitely dilute mixtures. 
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4.5.3 Partial Molar Volumes 
When solutes are introduced into such a fluid, substantial solvent density 

enhancements (clustering) or depletion (cavitation) are often observed around solute 

molecules. Debenedetti and co-workers identified 3 solute behaviours: repulsive, 

weakly attractive, and attractive, as follows (Debenedetti and Mohamed, 1989; 

Petsche and Debenedetti, 1991). 

1.  Repulsive solutes are those for which the repulsive part of the solute-solvent 

potential dominates the solute-solvent interactions. In this case, the solute and 

solvent molecules repel each other and, consequently, the average solvent 

density around a solute is less than the bulk density. Thus, addition of solute 

increases the volume of the solution and gives positive partial molar volumes 

(PMV). 

2. Weakly attractive solutes are those for which the solute-solvent potential 

interaction is dominantly attractive but are less so than the solvent-solvent 

potential interaction. So, the addition of solute still increases the volume of the 

solution and gives positive partial molar volumes. 

3. Attractive behaviour results when the dominant solvent-solute interaction is 

more attractive than the solvent-solvent interaction, so that the solute-solvent 

correlations exceed the solvent-solvent correlations. In this case, addition of 

solute decreases the volume of the solution and gives negative partial molar 

volumes. 

The observed partial molar volumes provided the main impetus for a whole 

new realm of investigations seeking to better understand the intermolecular 

interactions between the solute and the other species in SCF solutions. For example 

the partial molar volume of naphthalene at infinite dilution in a mixture of 

naphthalene and supercritical carbon dioxide is -2300cm3/mol at P=76 bar and 
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T=308.38 K (Eckert et al., 1986), while the partial molar volume of ethane at infinite 

dilution in a mixture of ethane and supercritical carbon dioxide is +350 cm3 /mol at 

P=73.97 bar and T=305.65 K. According to the classification of Debenedetti and 

Mohamed the above mixtures (CO2/naphthalene and CO2/ethane) belong to different 

types of supercritical mixtures; CO2/naphthalene is an ‘attractive’ mixture and 

CO2/ethane is a ‘weakly attractive’ mixture. 

The research group of X.Zhang (Zhang et al., 2002a; Zhang et al., 2002b) 

reported new data of PMVs of solutes in dilute supercritical solution. In their study, 

the PMVs of two polar solutes (H2O and H2S) in supercritical CO2 are negative, and a 

minimum can be observed in each PMV versus pressure curve at the pressure where 

isothermal compressibility of the fluid is largest. On the opposite site the PMVs of 

two non-polar solutes (H2 and CH4) are positive. 

For a solute (u) in solvent (V), the partial molar volume is defined as 

 
, V

u

u pT n

VV
n

 
   

 (4.6) 

with nu and nV being the numbers of moles of the solute and solvent, respectively. At 

infinite dilution,  
V

u u u s u sp,T,n0
V = lim n V(n =1,n ,T,P)-V(n =0,n ,T,P)

un




   , so uV can 

be computed in the isothermal-isobaric ensemble (NPT) from Monte Carlo 

simulations (Iwai et al., 1997). The computational method is not limited to Monte 

Carlo simulations; molecular dynamics simulations are equally applicable. Partial 

molar volume studies have been reported with this method (Stubbs et al., 2005) for 

naphthalene carbon dioxide mixture near the critical point with reasonable accuracy. 

An alternative approach is to use the Kirkwood-Buff (KB) fluctuation theory 

(Kang and Smith, 2007). This theory and its extension have been applied to study 

dilute supercritical fluid mixtures (Akiya and Savage, 2000a; Akiya and Savage, 
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2000b; Chitra and Smith, 2001a; Chitra and Smith, 2001b; Lin and Wood, 1996). In 

this formalism, the partial molar volume at infinite dilution can be calculated as 

 01 ( )v uv vvV G G 
     (4.7) 

where Guv and Gvv are solute-solvent and solvent-solvent fluctuation integrals, 

respectively. The subscript u refers to the solute and v to the solvent. The superscript 

0 and  refer to the pure solvent or infinitely dilute co-solvent, respectively. These 

fluctuation integrals are a function of pair correlation functions (gij(r)): 

 2

0
4 ( ) 1ij ijG g r r dr


     (4.8) 

Thus partial molar volumes depend on the relative strengths of the solute-solvent and 

solvent interactions. Pair correlation functions can be calculated directly from 

molecular simulations. 

The KB theory relates fluctuations in particle densities in the grand canonical 

ensemble to thermodynamic properties of mixtures. The pair correlation function or 

radial distribution function (RDF) can be calculated through simulations in canonical 

ensemble. The values of the integrals though RDFs can be obtained for  

a. solvent-solvent 

b. solvent-solute 

c. solute-solute 

The same integrals can be calculated for solvent and co-solvent, for mixture where we 

don’t have diluted solutions with introducing some modifications. 

4.5.4 Isothermal Compressibility 
The way in which the volume of a material decreases with pressure at constant 

temperature is described by the isothermal compressibility, κT. Isothermal 

compressibility is one on the important properties of the fluid, which gives very 
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strong indication of the unusual behaviours at supercritical conditions. The isothermal 

compressibility (κT) can be obtained from densities of the fluids according to equation 

(4.9) 

 T
1 1

T T

V
V P P




             
 (4.9) 

The theory of critical phenomena (Tucker and Maddox, 1998) tells us that, as the 

critical point of a fluid is approached (T → Tc), the isothermal compressibility 

diverges (i.e., it becomes infinite). Since this divergence occurs smoothly, there must 

exist a region of the phase diagram with T > Tc for which the compressibility   is 

large, by which we mean that T  > 0
T , where κ is the compressibility of an ideal gas 

(The compressibility of a perfect gas is given as 0
T ). As it turns out, this region of 

large  , which is called the‘compressible regime’ extends well beyond the near-

critical region of the phase diagram in which all fluids behave universally and the 

theories of critical phenomena apply (Tucker, 1999). 

Macroscopically, a large compressibility means that there is very little cost 

associated with an increase in solvent density, so we can easily compress the fluid. 

From a molecular point of view, a large compressibility means that there is enough 

free space, (a big voidage) between molecules, allowing the system to be compressed. 

In this case, there are two pictures of molecular microstructure that can satisfy this 

situation. Firstly, if the voidage is uniformly distributed between the molecules, or 

secondly, if there are high and low density regions. In the first case, a little effort is 

required to compress and condense the molecules together. In second case, a little cost 

is required to transfer a molecule from a low-density region to a high-density one. 

According to Morita (Nishikawa and Morita, 2000) there is a ridge that separates the 

supercritical region into more liquid-like and more gas-like regions in the supercritical 
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region. The ridge is shown in Figure 4-6. According to their research group, the ridge 

is the locus of the points where the values of the density fluctuation becomes 

maximum in isothermal changes.  

 
Pr = 1.1 

ρc 

SCF 

L 

V + L 

V 

Tc 

 

Figure 4-6: The gas–liquid coexistence curve. The blue colour indicates a high density region 
(liquid like) and the red colour a low density region (gas like). The dashed line represents the 
locus of the points with the maximum local densities fluctuation (drawn on data representing 
vapour-liquid curve for carbon dioxide). 

Density fluctuation and correlation length are quantitative expressions of the 

static structural fluctuation from the standpoints of number of molecules and size of 

molecular aggregates, respectively. The isothermal compressibility obtains its 

maximum value on the locus of the points of ridge. The isothermal compressibility is 

related to the Gibbs free energy through the equation 
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G V
V P V P


           

 (4.10) 

Many physicochemical properties of supercritical fluids are related to the 

second derivative of the Gibbs or Helmholtz free energy, so we expect a unique 

behaviour on the ridge. From this point of view, little work has been done connected 

rate constants, equilibrium properties or solubilities with the ridge. However, rate 
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constants or equilibrium constants of various chemical reactions in supercritical fluids 

show a singular behaviour on the ridge (Ikushima et al., 1992). Also infinite solution 

studies reported an anomalous behaviour of solute partial molar volumes at  pressures 

where the ridge located (Guo and Akgerman, 1998). 

4.5.5 Diffusion 
The most commonly used description of diffusivity on a quantitative basis is 

via the measurement of the well-known self diffusion coefficient. The diffusion is the 

rate of transfer of diffusing molecules through unit area of a section and is 

proportional to the concentration gradient 

 ( )CJ D
x


 


 (4.11) 

where D is the self diffusion coefficient. The self-diffusion is a single particle 

property and can be obtained from molecular simulation dynamic simulations with 

great accuracy. The common form to derive the diffusion coefficient through 

molecular dynamics is the through the Einstein equation. Detailed explanation for the 

intuiting aspect of the diffusion coefficient at supercritical conditions is given in the 

results section of diffusivity. 
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Part II. Simulation 
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5 COMPUTATIONAL METHODOLOGY 

olecular simulation has reached a stage where it can be reliably used 

for a large array of equilibrium and non-equilibrium properties of 

molecular liquids. The purpose of this chapter is to present the 

technical details of the Monte Carlo simulation and molecular dynamics. 

The two most widely used methods for atomic-level modelling of fluids 

Monte Carlo statistical mechanics and molecular dynamics have been used in our 

studies in the supercritical region. Both procedures typically have the same system 

setup including representation of molecules as collections of atom-centred interaction 

sites, utilization of classical force fields for the potential energy terms, and 

implementation of periodic boundary conditions. The principal differences are in the 

modes of sampling the configuration space available to the system. For MC, a new 

configuration is generated by selecting a random molecule, translating it, rotating it. 

Acceptance of the new configuration is determined by the Metropolis sampling 

algorithm; application over enough configurations yields properly Boltzmann-

weighted averages for structure and thermodynamic properties. For MD, new 

configurations are generated by application of Newton's equations of motion to all 

atoms simultaneously over a small time step to determine the new atomic positions 

and velocities. In both cases, the force field controls the total energy (MC) and forces 

(MD), which determine the evolution of the systems. In our simulations, we used both 

of the methods. 

M 



                                                                                                                                    71 

5.1 INTRODUCTION 

Typically, a molecular system simulation is carried out with anywhere from 10 

to 100,000 molecules. Larger systems are generally prohibited due to memory 

requirements, and (more importantly) speed considerations. Force calculations 

increase with number of particles. However, because we are using a very small 

number of particles and trying to determine macroscopic properties one must be very 

careful that the results are not system size-independent. Unless the actual system 

being studied is very small (a droplet, microstructure etc) a simulation box with 1000 

molecules will have a disproportionate number (nearly half) of molecules at the 

“surface”. This would completely skew the behaviour of the system. In order to get 

around this problem, we employ a trick called periodic boundary conditions. In this 

model, one chooses a small part of the full system to simulate and then makes the 

assumption that the rest of the system can be modelled as an infinite series of copies 

of the central box. This consideration of periodicity makes the simulation of 

condensed phase systems applicable. 

5.2 PERIODIC BOUNDARY CONDITIONS 

In the periodic boundary condition approximation, an infinite system is 

constructed as a periodically repeated array of the finite system that is being studied. 

A schematic diagram of a two-dimensional system is shown in Figure 5-1, each 

replica containing the same number of molecules in the same configuration (positions 

and orientations). Thus when a molecule moves through a boundary and so out of the 

sample it is automatically replaced by a molecule moving into the sample through the 

opposite face of the box. 
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Figure 5-1: Schematic representation of periodic boundary conditions for two–dimensional 
system  

Anyone who has played video games such as Pacman, Asteroids, Galaxians etc. will 

be familiar with this periodic boundaries trick. The primary simulation box can be 

envisioned as being surrounded by images of itself; for a “cube”, there would be 26 

images around the central box. The central box is the “unit cell”. With such periodic 

boundaries it is only necessary to store the coordinates of the molecules in the central 

box, the periodic images being copies of these. 

 Here we have to repeat that the heart of a Monte Carlo simulation program 

is the calculation of the energy. However, the assumption of periodicity immediately 

makes the simulation of such system tractable even through all the molecules in it are 

modelled explicitly. 

In order to calculate the intermolecular interaction of any molecule, we 

position it at the centre of a box with dimensions identical to the simulation box. The 
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central molecule interacts with all molecules whose centres fall with this region, i.e., 

the closest periodic images of the other N - 1 molecules. The simplest procedure is to 

use a spherical cutoff such the interactions are evaluated with the nearest images of 

the other molecules out to a cutoff distance RC, as illustrated in Figure 5-1. In order to 

avoid evaluation of interactions with more than the one image of another molecule RC 

is always chosen to be less than or equal to half the length of the shortest edge of the 

periodic cell. Typically, values for RC are 10-15Å. Historically, an alternative 

approach with a cubic cutoff was used occasionally used whereby the interactions 

were evaluated with the nearest image of each of the remaining N-1 molecules. This 

procedure was abandoned since the boundary conditions do not reflect the normal 

spherically symmetric nature of the intermolecular forces and it requires the 

calculation of roughly twice as many pair interactions as spherical cutoff. The 

spherical cutoff is an approximation that could (and does) have important 

consequences for the behaviour of a system during a molecular simulation. It would 

be obviously better to have methods that allow the interaction after the cutoff to be 

considered. A class of such approximations exists and they are called long range 

corrections techniques. 

5.3 CONFIGURATIONAL ENERGY 

The potential energy controls the outcome of the Monte Carlo simulations. It 

is computed from the pairwise sum of the intermolecular interaction energies between 

molecules. Because our studying systems comprised of small molecules, we shall 

restrict ourselves to treat the molecules as rigid molecules and we will ignore the 

intramolecular interactions. So the intermolecular interaction is restricted to pairs of N 

molecules and total potential energy (U) is obtained by summing over the contribution 

all of the individual pairs. 
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

 
    (5.1) 

This calculation is known as Naïve Energy Calculation (Sadus, 2007), it is 

obvious that the “self” interactions do not contribute to the potential energy of the 

system and we avoid the “double” calculation of the pair interactions. Obviously, the 

type and nature of the terms in the energy function and the values of the parameters 

will depend upon the force field that we choose to use. 

To model intermolecular interactions, we adopt pairwise additive effective 

potentials of the sort commonly employed in computer simulation. Specifically, the 

interaction between two molecules I and J is assumed to be given by the sum of site-

site terms of the Lennard-Jones plus Coulomb form 
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  (5.2) 

where εο=8.8541910-12C2N-1m-2 is the dielectric constant of the vacuum, iq is 

the charge on site i of the molecule I, ijr is the distance between sites i and j, and ij  

and ij  are Lennard-Jones interaction parameters between sites i and j located at 

molecules I and J. Sometimes simulation models involve with united-atom (UA) 

(Jorgensen et al., 1984) representations wherein multiple atoms are combined into a 

single interaction site or all-atoms (AA) versions (Jorgensen et al., 1996). 

For the Lennard-Jones interactions between unlike atoms, the Lorenzt-

Berhelot combining rules were used. The Lennard-Jones interactions were calculated 

using the arithmetic mean of the core diameters and the geometric mean of the well 

depths. 
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 ij i j    (5.4) 

The exact form of the energy within the cutoff distance is given by the form below 
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5.4 LONG RANGE CORRECTIONS 

So far, we have discussed the concept of periodic boundary conditions and the 

output for the configurational energy. In all these theories we assume “perfect” 

structure. Although, we know that real materials do have order and structure, 

particularly on short length scales. The basic idea behind this concept is that, 

elucidation of the structure of fluids is important to understanding fluid behaviour. 

Considering Figure 5-2, which represents a snapshot of a collection of spherical 

molecules, with an arbitrary particle picked as a reference. At a distance r from the 

reference particle, the density of other particles )(r  will depend on time. However, 

on average the density will be a quantity dependent only upon distance, r 

 

 

dr

 

Figure 5-2: Typical arrangement of a fluid of spherical particles. The density at a given radius r 
with respect to a reference particle is shown. 

We can immediately recognize several qualitative features from Figure 5-2. 

First, )(r must tend toward zero, as r goes to zero, since additional particles cannot 

occupy the same location as the reference particle. Second, at large r, the influence of 
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the reference particle is zero, and )(r must approach  , the macroscopic density. 

Third, at intermediate separations, )(r may be less than or exceed  , depending on 

whether the distance r corresponds to distances of repulsion or attraction between 

particles. 

Now, we define a function  /)()( rrg  the behaviour of g(r) is such that 

0)( rg as 0r  

1)( rg as r  

g(r) is called the radial distribution function. 

We mentioned that the Monte Carlo algorithm it depends on the outcome of 

the total energy. The potential energy is defined as 

 IJU U  (5.6) 

The differential number of molecules rdN  in an element of spherical volume   at a 

distance 2dr  4 drr between r and r + dr from the central molecule is 

 2
rdN   g(r)4 dr  (5.7) 

The potential energy of this differential system is 

 2
IJU (r)g(r)4 dr  (5.8) 

For all distances from the reference molecule, the total potential energy is 

 2
IJ

0

U (r) (r)g(r)4 dr 


  (5.9) 

What about the portion of the potential energy that was “cut off”? The 

contribution to U  from the truncated “tails” of the pair potential function (the so–

called “long range correction”) is calculated by direct integration, using the energy 

equation. To obtain the total potential energy of the system, we would sum over all 

molecules, letting each one be the reference. Each integral would be the same as the 
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above expression. Thus, we would expect that the total internal energy would be 

obtained by multiplying the above expression by N, the total number of molecules. 

However, this would over count, since each pair interaction would be counted twice. 

Consequently, fullU  is obtained from 

C

1
2

full c lrc
1 1 R

U   U   U  2  V(r)g(r)r dr
molN I

IJ
I J

U N 


 

      

But how strong are these long range interactions and what part of the total part 

of energy they account of?. Let’s have a look on the EPM2 model for carbon dioxide. 

The EPM2 model is presented in Figure 5-3  

180 ο

LJ Carbon
   σ =2.785 Α
  ε =0.0576 Kcal -0.33225 e

-0.33225 e +0.6645 e
LJ Oxygen
   σ =  3.064 Α
  ε = 0.16493 Kcal  

Figure 5-3: Parameters for EPM2 model for carbon dioxide. The distance between carbon and 
oxygen at 1.149Å 

The influence of the potential never vanishes for electrostatic interactions. 

Therefore, it is clear that the treatment of long-range electrostatic interactions must be 

performed. Long-range Van der Waals interactions are less strong and decay more 

quickly with distance. 

The Coulomb potential vanishes as 1/r, which is a much slower decay than the 

1/r6 dispersion interaction characterized by the LJ model potential. Representative 

curves are shown in Figure 5-4 and Figure 5-5. Whereas the LJ model can quite 

reasonably be truncated at about 2.5 LJ diameters, the Coulomb potential is at five LJ 
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diameters nowhere near approaching zero. There are many methods have been 

developed to treat the long range interactions. The most widely used are analytical 

forms for Van der Waals (Allen and Tildsley, 1989) interactions and reaction field 

method (Lisal et al., 2002)`for electrostatic interactions. 
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Figure 5-4: Van der Waals interactions between two carbon atoms in carbon dioxide molecule 
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Figure 5-5: Coulomb repulsion of the two Carbons in CO2 
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5.4.1 Van der Waals interactions 
It is known that long range contributions have a significant influence on the 

simulation of inhomogeneous systems, even with large number of molecules used in 

the simulation. 

 

Figure 5-6: A two dimensional diagram of an inhomogeneous system. In the κΩ physical space 
there, M elements interact with elements with the other elements of different physical spaces 

For an inhomogeneous fluid system, the total long range corrections (LRC) LRCX  to 

an extensive thermodynamic property X is estimated in terms of all the local values 

LRCX  

 
1

( )
M

LRC LRC
k

X x 


   (5.10) 

where  is the physical space occupied by the κth local element having a uniform 

density and M is the total number of local elements, like the Figure 5-6. In the 

presentation of Figure 5-7, the term LRC refers to the LRC from Van der Waals 

interactions. For a molecular system, the LRC to the Van der Waals configurational 

energy of a molecule i interacting with molecules (molecule j) in the κth element, is 

expressed by  
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where , ( ) ( )
th

LRC
ij ij j th

dV

u u r dV dV



   . 

The ( )j thdV  is the density of the fluid in a volume element dV away from the 

central molecule i in the κth local region, ( )iju r is the pair potential function, r is the 

distance between the central molecule i  and another molecule j  in dV . 

kth

jj
i 

Rc

dV

 

Figure 5-7: The molecule i interacts with the molecules in the molecules within the kth element, 
volume dV. The element is outside the cutoff and Rc is the cutoff. 

Assuming a homogeneous system, j  is equal to bulk density ,  so we can recover 

the standard expression for long range corrections to the energy of molecule i used in 

bulk simulations by evaluating following integral: 

 2 9 38 84 ( ) ( )
9 9i c c

rc

U r u r dr r r   


     (5.12) 

The assumption is valid for our system as the potential function ( )u r decays very 

quickly. 
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5.4.2 Electrostatic interactions  
Although the Ewald summation method can be used to estimate the long-range 

electrostatic interactions with results similar to that the reaction field method (Hirst, 

1985; Kettler et al., 2002; Lisal et al., 2002), it is computationally expensive. 

Therefore, the reaction field method is selected to handle the long-range electrostatic 

forces in this work. In this method, the long range corrections is given by 

 
2 2

3 3

1 11 1
2 1 2 1

rf ij rf cut
Coul i j

i I j J ij rf cut cut rf cut

r rU q q
r r r r

 
  

   
          
  (5.13) 

where i and j are the interaction sites on two different molecules I and J respectively, 

rf and cutr denote the reaction field dielectric constant and the cutoff distance, 

respectively. rf is assumed to be infinity and this conducting boundary ( rf   ) 

leads to both reasonably consistent results and good computational efficiency. 
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6 COMPUTATIONAL IMPLEMENTATION 

n this chapter, technical details of the Monte Carlo and molecular dynamics 

simulations are presented. We describe the approach used to perform Monte 

Carlo simulation in terms of code developing. Programs to accomplish 

simulations were all written in the programming language FORTRAN 90 and they 

were then executed on some full-size servers like C3, Xenon, Plato and Socrates at 

University College London. Modified modules from the Dynamo library (Martin and 

Martin J.Field, 2000) and modified programs from Allan and Tildsley’s book (Allen 

and Tildsley, 1989) were used to support the code development. The NAG compiler 

was utilized to run the programs on these servers. 

I 
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6.1 ALGORITHM DEVELOPMENT 

The algorithm below describes the Monte Carlo pseudo code in canonical 

ensemble. The code developing was a rigorous task, since the MC simulation needs 

enough space and time even for a single run. In order to describe the code developing 

we give below an overview of the primary parts of the code scheme. 

Part 1 
Initialisation: 
Assign initial coordinates rxi, ryi, rzi for the N atoms, N, V, T. 
Evaluate and store UTotal 

Part 2 Production: Generate Markov Chains 
Assign values for Ncycles, Nsteps. 
loop n ← 1…NCycles 
       loop n ← 1…Nsteps 

Part 2.1              Generate a trial position: 
             rxTrial ←(rxi + rMax x (2 x rand() -1)) 
             ryTrial ←(ryi + rMax x (2 x rand() -1)) 
             rzTrial ←(rzi + rMax x (2 x rand() -1)) 

Part 2.2              Calculate energy of molecule i at the trial position: 
             (Utriali) 

Part 2.3              Calculate change in the energy: 
             ∆U ← Utriali – Ui 

Part 2.4              Apply acceptance criterion: 
             if (∆U < 0)                        ! accept new position 
                rxi ← rxTrial 
                ryi ← ryTrial 
                rzi ← rzTrial 
               Ui ← Utriali 
               Utotal ← Utotal + ∆E          ! update energy. 
               else 
               BF ← exp(-kB ΔU)          !  Boltzmann factor 
                    if (BF > rand())           ! accept new positions 
                     rxi ← rxTrial 
                     ryi ← ryTrial 
                     rzi ← rzTrial 
                     Ui ← Utriali 
                     Utotal ← Utotal + ∆U       !update energy. 
                     end if 
                end if 
            if (n > NEquilibrium)          !end of equilibrium period 

Part 3  Accumulation :Accumulate averages 
            end if 
       end i loop 
End n loop 
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An explanation of each part displayed in the algorithm is given in the next three parts 

initialization, production and accumulation. 

6.2 INITIALIZATION 

The initialization procedure is consisting of two steps. The first one is building 

the simulation box and the second one, calculating the total potential energy of the 

system.  

6.2.1 Solvent Box 
It is very important, how we are creating the first simulation box. The 

approach adopted for the determination of the coordinates of the molecules in the box 

is to start off by placing molecules at random within a box much larger than a box of 

the target size. The coordinates of atoms are stored in a large Fortran 90 array: 

ATMCRD (1:3, 1:NATOMS). 

The size of the large box is then gradually reduced until the target size is 

reached. The reason for starting off with a large box size is that the probability of 

having molecules overlap will be small. The initial box length was ten times the target 

length and the reduction procedure was carried out in ten steps. The number of ten 

steps has been chosen arbitrary, the more steps the better is but they increase the 

computational time. After the reduction procedure, the solvent box will have attained 

the desired volume but the molecules will be by no means fully equilibrated. Thus, the 

procedure finishes by performing a long Monte Carlo simulation, before writing out 

the final coordinates to an external file. The coordinates of the last file can be 

considered as an equilibrated box. Molecular dynamics can be used for the 

equilibration of the initial box. A different approach is to start all the molecules from 

a lattice. As moves progress, the lattice “melts” and a simulation box is obtained. The 

initial period of the simulation is an equilibration period, and must be discarded. We 
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know that the final result should be independent of the starting configuration, so we 

checked this by checking the results with using different initial boxes. 

As pointed out before, the choice of number of molecules is crucial for the 

calculation of any thermodynamic property. We choose to use 1000 solvent molecules 

as a solvent box. The number 1000 is chosen as it is sufficient to describe the system 

and efficient for keeping down the computational time. Furthermore, other research 

groups use relevant amount of particles at similar conditions (Song and Maroncelli, 

2003). 

6.2.2 Potential Energy 
The calculation of the potential energy is crucial for the Monte Carlo 

procedure. As we mentioned in the previous chapter, the energy is calculating by 

adding the energy of pairs of particles. If intermolecular interaction is restricted to 

pairs of N molecules, the total potential energy is obtained by summing over the 

contribution all of the individual pairs. A pseudo-code scheme for the calculating the 

total energy is given below: 

loop i 1 ... N 

loop j 1 ... i-1 

Evaluate rij. 

Evaluate u(rij). 

Accumulate energy. 

end j loop 

end i loop 

The above pseudo code illustrates the nesting of loops required for the Naïve 

evaluation of energy by equation (5.1). If there are N molecules in the simulation, 

then to calculate the pairwise energy experienced by each other molecule involves a 
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summation of N - 1 terms. Care is taken to avoid identical molecules and a total of 

N(N-1)/2 iterations will be performed. At Fortran 90 code, the above was 

implemented with the following statements: 

   ! . Outer loop over the molecules. 
   DO IMOL = 1,NMOLECULES   

   ! . Get the some data IMOL(position) 
   CALL POSITION (IMOL) 

   ! . Pick the center of the molecule. 
    X= 
    Y= 
    Z= 
 

   ! . Inner loop over the molecules. 
         DO JMOL = 1,(IMOL-1) 

         ! . Get the some data JMOL(position) 
         CALL POSITION (JMOL) 

         ! . Pick the center of the molecule. 
         X= 
         Y= 
         Z= 
 

         ! . Calculate the distance between the molecule centers 
             rxij= 
             ryij= 
             rzij= 
         ! . Applying the minimum image convention 
        rxij= 
             ryij= 
             rzij= 
        . . . 

        . . . 

   END DO 
 
   END DO 
 

To calculate the intermolecular interaction of any molecule, we position it at 

the centre of a box with dimensions identical to the simulation box. The central 

molecule interacts with all molecules whose centres fall with this region, i.e., the 

closest periodic images of the other N - 1 molecules. This can be coded in FORTRAN 

using the intrinsic anint(x) to determine the nearest integer of x. For example, to add 



                                                                                                                                    87 

the correct number of box lengths to the molecular coordinates rij or the pair 

separation vector, we write: 

rxij(i) = rxij(i) - boxl * anint( rxij(i) / boxl ) 

The above statement is evaluated in the loop, during the evaluation of energies. The 

procedure for calculating the energy using periodic boundary conditions is given 

below. 

loop i 1 ... N 

loop j 1 ... i-1 

Evaluate rij. 

Convert rij to its periodic image (rij). 

if (rij< cut_off_distance) 

Evaluate u (rij'). 

Add corrections to energy. 

end if 

end j loop 

end i loop 

The above algorithm is different from the naïve approach in two important respects. 

a) The accumulated energy is calculated for the periodic separation 

distances. Secondly, 

b) Only molecules separated by a distance less than the cut-off distance 

contribute to the calculated energy or forces. 

The cut-off distance is a consequence of the periodic boundary conditions. It 

can be any distance up to half the length of the simulation box. A higher cut-off is not 

permitted because it would violate the minimum image convention. Consequently, the 

above algorithm evaluates the properties of a truncated intermolecular potential rather 
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than the full potential. When PBC are used, the full contributions of the 

intermolecular potential have to be obtained by using long-range correction terms. 

The full energy was obtained by adding the long-range correction. The contribution of 

the long-range correction was implemented into the loops though equations (5.12) and 

(5.13). 

6.3 PRODUCTION 

The Monte Carlo simulation was performed in blocks (Part 2).Every block 

consists of number of steps. During each step, a displacement and rotation is 

attempted for every molecule (Part 2.1). The molecule to be displaced is chosen 

randomly. It also possible to displace every particle and apply the acceptance criterion 

to the combined move. This procedure has not been chosen, as it increases 

dramatically the computational time. The displacement of the molecule is coding 

though: 

1. Choosing a molecule at random.  

Choosen= INT ( NMOLECULES * rand(iseed)) 

Essentially, the above statement multiply the number of molecules 

(NMOLECULES) with a random number (rand(iseed))and the INT function 

converts the result to an integer. 

2. Displacing the molecule. 

rxtrial = rx(i) + (2.0 * rand(iseed) - 1.0) * drmax 
rytrial = ry(i) + (2.0 * rand(iseed) - 1.0) * drmax 
rztrial = rz(i) + (2.0 * rand(iseed) - 1.0) * drmax 

             

 where drmax a parameter, controls the “length” of the attempted, 

rand(iseed)is a function for generating random number between 0 and 1.The rand is 

equal to the fuction RANDOM_NUMBER()in Fortran 90. The iseed is the starting 

number for random generator. After a displacement is made, the energy of the new 
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state is compared to the energy of the old state. The Metropolis selection rule is used 

to decide whether or not this new state is accepted 

6.4 ACCUMULATION 

After the equilibration time, it is important that the successive values of any 

observable be statistically independent when calculating mean fluctuations around 

average values. So the calculations are often carried out in series of blocks (Nblocks) 

containing a number of m steps (Nsteps). As the number of configurations (steps) in 

each block increases, it would be expected that the block averages become 

uncorrelated and successive values become independent. We monitored the potential 

energy U by plotting in MS excel (see Figure 7-5). A schematic diagram of evaluation 

of potential energy is given at Figure 6-1. 

 

Figure 6-1: Schematic representation of potential energy during the Monte Carlo progress 
 

6.5 TECHNICAL DETAILS 

MC simulations were carried in the canonical ensemble (NVT) using periodic 

boundary conditions. A system with the 1000 molecules was studied at all times. 

t

 U

Equilibration
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Simulations were organised in cycles, each cycle consisting of 100000 attempts to 

displace or rotate a randomly chosen molecule. A variable spherical cut-off radius, 

equal to half the box length was used and long-range corrections were recalculated 

after each move. Acceptance ratio of all trial moves was adjusted to 40%. In each run, 

more than 107 Monte Carlo configurations were generated to reach equilibrium and 

the structural and thermodynamic properties were obtained from the following 200 x 

106 MC moves. We have studied three systems, ethane, fluoroform and carbon 

dioxide. Details about the potential are given in results section. The main program is 

given in appendix. 

In all MD simulations, a spherical cut-off equal to the half of the simulation 

boxed is used. A time step of 2 femtosecond is used in leapfrog verlet algorithm with 

Berendsen thermostat (Allen and Tildsley, 1989). A time period equals to 0.5 

nanoseconds is used for equilibration and 1.5 ns for production.We have studied three 

systems, pure carbon dioxide, mixture of methane + carbon dioxide at infinite dilution 

and water + carbon dioxide at infinite dilution.  All simulations were performed at 

temperature 308.15 K (Tr=1.02) in NVT ensemble. When in the text we refer to 

solvent, we mean carbon dioxide except when we state differently and when we refer 

to solute either to methane or to water. The methane molecule was represented by 

OPLS-AA potential model and water by TIP3 model (see section 4.4.3 and 4.4.4). 

The main program is given in appendix.  

Rigid molecules are being used in the simulations. The geometries of  water 

molecule is the same with H-O bond distance of 0.9572Å and H-O-H bond angles of 

104.52o. The methane molecule has tetrahedral symmetry, with C-H bond lengths of 

1.090 Å and H-C-H bond angles of 104.47o. 
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Part III. Results and Discussion 
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7 RELIABILITY OF THE METHOD 

here are two elements required to successfully predict physical properties 

in molecular simulation. The first part requires the development of 

appropriate molecular simulation techniques, in order to describe a 

physical system as efficiently as possible. The second part is the development or use 

of a suitable interaction potential model. Given the two perquisites, physical systems 

can be described successfully. 

 In this chapter, we evaluate the outcome of our Monte Carlo program by 

presenting the analogous results. Then, we are examining the validity of the molecular 

potential in the supercritical region for supercritical carbon dioxide. In this study, we 

have used a semi-empirical classical potential for carbon dioxide. It is an atomistic 

model, which is mimicking carbon dioxide geometry and quadrupole momentum. It is 

well known with the abbreviation EPM2 (Harris and Yung, 1995) and its parameters 

are adjusted to reproduce the vapour-liquid curve. 

  

T 
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7.1 INTRODUCTION 

Examining the supercritical phase, in the vicinity of the critical temperature 

(Tc1.01-1.103) though molecular modelling techniques, is a rigorous task for three 

reasons. Firstly, there are few experimental data because of the problems associated 

with observing the supercritical phase experimentally, in order to be compared with 

computational studies. Clearly, without a comparison to experiment, the accuracy of 

simulation results cannot be gauged.  

Secondly, molecular simulation requires very large simulated systems (number 

of molecules-simulated box) because the correlation length of the system becomes 

macroscopic as the critical point is approached (Quirke and Gubbins, 1996), which 

makes simulation run’s time consuming and approximations necessary on the 

estimation of long range interactions. Surely, the rapid growth of computers has 

provided scientists and engineers great advances in computational power, and has 

made solving of numerous variable problems possible in many cases. By applying 

appropriate approximations, it is now possible to run molecular simulations, which 

were impossible in past. Although, approximations carefully applied in simulation 

will not always give a complete physical picture of the real systems. In other words, 

molecular modelling proves itself as a valuable tool only when it is not 

computationally prohibitive and accuracy moves between acceptable levels. 

Thirdly, there are only a few molecular potentials; they can predict the critical 

point accurately, being used in the phase equilibrium simulation techniques 

(Panagiotopoulos, 1987). Most of existing potentials were tailored to yield correct 

thermodynamic properties even closely to supercritical region, and never tried for 

liquid–vapor coexistence curve (Colina et al., 2003). The use of potentials with an 

unknown critical point poses a high risk and can lead to flawed results, especially 
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when the results are compared with real data. This is not applying for the models we 

use in this study, the fluoroform, the ethane and the carbon dioxide as their potentials 

are describing properly the vapour-liquid curve.  

7.2 EVALUATION OF THE METHOD 

In order to check the reliability of our code and our approximations in the 

implementation, we run simulations for fluoroform and ethane near their critical 

points. We checked our results against the simulation results of Song and Maroncelli 

(Song and Maroncelli, 2003). A standard output during an NVT Monte Carlo 

simulation is the potential energy. Song and Maroncelli performed simulations for 

fluoroform and ethane in the supercritical region by employing molecular dynamics. 

The potential energies are given by them as an ensemble average. 

Their simulations were carried out at 310K on a sample of one thousand 

molecules by using the DL_POLY package (Todorov and Smith, 2004). We 

performed identical simulations at the same conditions. We have chosen the study of 

Song and Maroncelli because they had examined in their work two completely 

different systems, one with very strong electrostatic interactions and an apolar one. 

We checked the validity of Monte Carlo program against two extreme cases. 

 It is believed that the long range interactions play an important role at 

molecular simulation at supercritical conditions (Tucker, 1999). Electrostatic 

interactions belong to this category and decay very slowly with long correlation 

lengths. Two methods (Sadus, 2007) can be used to treat long range electrostatic 

interactions, the Ewald method and reaction field method. In our code, we 

implemented the reaction field method. The Ewald method is more suitable for 

systems with strong electrostatics interactions (Allen and Tildsley, 1989). We 

implemented the reaction field method firstly, because it is computationally less 
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costly and secondly because our final aim is to simulate the carbon dioxide. 

Historically CO2 was treated as a nonpolar solvent, primarily because of its low 

dielectric constant and zero molecular dipole moment. Further, the reaction field 

method has been used by Harris and Young group for EPM2 studies (Harris and 

Yung, 1995). 

The reliability of our Monte Carlo code for those systems was tested 

successfully. The calculated configurational energy from the present Monte Carlo 

simulation is compared with the literature values from Song and Maroncelli in Figure 

7-1 and Figure 7-2 for fluoroform and ethane, respectively. 

 

Figure 7-1: Dependence of residual potential energy with pressure along an isotherm (T=310K) 
for fluoroform (Tc=299.1K). Comparison between simulated literature values (Ulit) and 
simulated values (Usim).  

The simulation was performed very close to the critical point for both of the 

components. However, the agreement is better for the ethane. We have expected that 

as ethane molecule is an apolar molecule without any electrostatic interactions near 

critical pressures. The small discrepancy observed for fluoroform near critical 

pressures can be attributed to the dominant role of the electrostatic interactions, which 

the reaction field method underestimates. The discrepancy is not posing any risk on 
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using the developed code for simulating the CO2, as CO2 lacks of strong electrostatic 

interactions. However, we can conclude that a system with strong electrostatic 

interactions close to critical point is better to be treated with the Ewald method. 

 

 

Figure 7-2: Dependence of residual potential energy with pressure along an isotherm (T=310K) 
for ethane (Tc=305.33K). Comparison between simulated literature (Ulit) values and our 
simulated values (Usim). 

There was no need to check the validity of molecular dynamics since it has been used 

successfully by Maroncelli and Song (Song and Maroncelli, 2003) in supercritical 

region. Furthermore, Maroncelli and Song have used the DL_POLY code for their 

studies, so there is no need to test their results with DL_POLY. 

7.3 EVALUATION OF THE MOLECULAR POTENTIAL 

Successfully tested the Monte Carlo program, the next step is the evaluation of 

the interaction potential. We comprehensively evaluated different potential models 

proposed for carbon dioxide in our literature survey in section 4.3.3. The EPM2 which 

was optimised to reproduce the critical (Harris and Yung, 1995) point and liquid-

vapour coexistence curve of the real fluid using the Gibbs ensemble Monte Carlo 

method (Skarmoutsos et al., 2005) matches the purposes of our study. The aim of our 

evaluation is to examine the validity of EMP2 in supercritical region by simulating its 
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configurational energy, before its adoption and systematic use for evaluating 

thermodynamic and solutions properties. 

7.3.1 Experimental Configurational Energy 
The internal energy data for the single component CO2 were obtained from the 

NIST database (2006). The NIST database uses the Span-Wagner equation of state, 

which is the current standard for CO2 and it is accepted as essentially equivalent to 

experimental data. 

In order to calculate the ideal part of the internal energy, we assume the 

classical approximation of statistical mechanics where one hypothesises that the 

energy for a system can be written as sum of energies, each comes from a different 

property of the system. Within this approximation, the ideal partition function can be 

written as a product of the partition functions pertaining to the different types of 

energy. In the case, of a polyatomic gas like CO2 the ideal partition function is a 

product of electronic, nuclear, rotational, translational and vibrational partition 

functions (McQuarrie and Simon, 1999). In that case the ideal part of the internal 

energy is given by the equation (Van P.Carey, 1999) 
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The experimental potential energy is obtained from the total experimental potential 

energy (NIST database) by subtracting the ideal part, which calculated through 

equation (7.1). 

The potential energy for the single component CO2 was calculated through three 

methods: 

1) Monte Carlo simulations in NVT ensemble conditions, where 

temperature and volume remain constant. 
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2) Molecular dynamics simulations in NVT ensemble conditions, where 

temperature and volume remain constant. 

3) Using the Redlich-Kwong equation of state. 

7.3.2 Simulated Configurational Energy 
The internal energy using Redlich-Kwong equation of state has been 

represented only in the terms of potential energy and can be given as (Van P.Carey, 

1999) 

 1/ 2

3 ln
2

R R
EOS

R

a N V NbU
b T V

    
 

 (7.2) 

where, N is the number of molecules, T is the temperature, V is the volume and aR 

and bR are constant, which depends on the critical temperature and pressure of the 

fluid. The value of aR and bR for carbon dioxide that have been used in order to 

calculate the potential energy are, 18 x 10-48 (Pa m6 K1/2 / molecule2) and 4.93 x 10-29 

(m3 / molecule) (Van P.Carey, 1999), respectively. 

For both MD and MC we used the same set-up and the results were obtained at 

constant temperatures of 308.15 K. Under the respective isothermal conditions, the 

pressure was varied in the ranges 2 to 12 MPa. The temperature is 4K above 

(T=1.02Tc) the critical temperature of carbon dioxide (Tc=304.1 K), while the 

pressure varies from a point below the critical to one above the critical pressure of 

carbon dioxide Pc=7.38 MPa. The results for configurational energy have been 

compared with the experimental data we calculated from NIST. The objective behind 

computing the potential energy and comparing them with experimental data is to 

check the viability of the potential model EPM2. The comparison has been 

represented through graph in Figure 7-3 and Figure 7-4 in two different graphs which 

allows making a better assessment and easy understanding. 
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Comparison of the results obtained by MC, MD and Equation of States (EOS) 

with experimental database, establishes a good agreement between MD and 

experimental results from low to high densities. Hence, molecular dynamics technique 

is reliable in predicting different properties, if a correct potential model is used. Usage 

of the EPM2 model for predicting potential energy of CO2 also seems to be very 

valid. 

 

Figure 7-3: Comparison of Configurational   calculated through MC and MD with Experimental 
values at T = 308.15 K for CO2 
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Figure 7-4: Comparison of Configurational calculated through EOS with Experimental values at 
T = 308.15 K for CO2 
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The MC results are close to the experimental ones even at pressures near the 

critical. More specifically, the MC results match well with experimental values and 

MD predictions expect the low pressure region. The fact that the MC and MD, two 

different methods which give almost same results for predicting the potential energy, 

proves that the molecular potential is valid and can be used for describing the CO2 in 

the supercritical region. In the case that the molecular potential has a weakness both 

methods should give flawed results.  

On the other hand, the EOS results are deviating considerably from 

experimental ones. Traditionally, the performance of EOS has been improved by 

introducing many interaction parameters (Lue and Prausnitz, 1998) for studying pure 

solvents and mixtures in the supercritical regime. However, the use of a simple EOS 

is inadequate to predict even simple thermodynamic properties like internal energy 

and density, like the one we observe for the case of internal energy Figure 7-4. The 

results predicted with EOS deviate significantly at pressure above the critical, since 

the packing of molecules increases quickly with pressure and the Van der Waals 

theory of EOS meets its weakness. 

Conventional Monte Carlo technique except the low pressure region, can be 

used as a tool for studying difficult systems, like supercritical fluids in comparison 

with EOS. Furthermore, it gives us an insight to the systems on atomic scales, which 

can be used to establish a relationship between intermolecular potential and 

thermodynamic properties. Molecular dynamics technique can be improved with 

using methods that are more sophisticated on integration algorithms; however, it is 

adequate for studies in supercritical region for carbon dioxide even for low pressures. 

In the next section, we discuss the Monte Carlo limitation at the low pressure region.  
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7.3.3 Molecular Dynamics vs Monte Carlo 
Despite the great validity of MC and MD, during Monte Carlo simulation near 

the critical point, we did come across an unexpected situation, at low densities. The 

Monte Carlo method does not properly predict the configurational energy of the 

system, despite the fact that the molecular dynamics results agrees well with the 

experimental ones. As we have justified that, the molecular potential we used is 

adequate to describe the CO2 in the supercritical region, so the inadequacy belongs to 

the Monte Carlo method. 

Despite the identical procedure (system set up, representation of molecules, 

periodic boundaries conditions, long range corrections) the potential energy of the 

system, which calculated through molecular dynamics, agrees well with experimental, 

but Monte Carlo does not. In view of the importance of these methods, there has been 

surprisingly little research carried out comparing their efficiencies (Jorgensen and 

Tirado-Rives, 1996). Another fact is that the discrepancy of Monte Carlo and 

molecular dynamics can not be attributed to long range interactions of the model. As 

the research group (Kettler et al., 2002) of Kettler studied the effect the of long range 

corrections on the EPM2 molecular potential and they concluded that their effect is 

not important, their findings are in accordance with our opinion as CO2 lacks of strong 

electrostatic interactions. 

The procedure which has been used to build up the initial configuration 

described in the section 6.2 .We present the evaluation of the configurational energy 

with the progress of the Monte Carlo (successive steps) at the lowest density =37.94 

Kg/m3 in Figure 7-5. In order to investigate this peculiar effect we used the last 

configuration produced through the Monte Carlo simulation to start a molecular 

dynamics simulation and we left the system to equilibrate. After the equilibration, the 

system ends up with a different configurational energy. 
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Figure 7-5: Evaluation of the configurational energy at Pressure P=2MPa during progressive 
configurations left) Monte Carlo simulation right) molecular dynamics simulation. The same 
system equilibrates at different value of configurational energy. (A small part of MD simulation 
is shown in figure for a better representation) 
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Figure 7-6: Evaluation of the configurational energy at Pressure P=5.5MPa during progressive 
configurations left) Monte Carlo simulation right) molecular dynamics simulation. The same 
system equilibrates at same value of configurational energy, but molecular dynamics simulation 
is sampling systems in a greater range. 

We did exactly the same for higher pressures and we present the results for 

pressure P=5.5 MPa in Figure 7-6. At this pressure, the Monte Carlo configurational 
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energy starts to diverge from the molecular dynamics one as we move to lower 

pressures. Traditionally, the Monte Carlo has a weak performance (Kofke, 1993) with 

simulation of systems at low density (gas phase) and strongly associating fluids, in 

which molecules can find each other to bond. In other words, there are regions of 

phase space having a large contribution to the properties of the system, but the 

simulation cannot find them. In our case we believe that this discrepancy between 

Monte Carlo simulation and molecular dynamics is problem is attributed to the nature 

of the Monte Carlo simulation. 

In the Metropolis algorithm, the criterion of the acceptance of a random 

generated configuration depends on its energy, since the fixed variables in the 

canonical ensemble are the number of particles, volume and temperature. We believe 

that the problem is that the Markov chain process does not properly represent the 

statistical distribution of states for energy particularly for low densities. 
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Figure 7-7: Phase diagram for carbon dioxide the blues marks indicate the points we performed 
molecular simulations at low densities  
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The conventional Metropolis algorithm used in Monte Carlo molecular 

simulations requires molecules undergo random unphysical movements and the 

moves are only accepted based on the system temperature and the energy change of 

the move. The unphysical nature of MC moves is the only difference of the Monte 

Carlo method as it allows moves, which would not happen, in molecular dynamics. In 

order to comprehend, it is better to look at the points we performed simulations and 

their location on the phase diagram in Figure 7-7. The discrepancy starts to happen at 

=0.3c and lower densities. 

Let us, assume that one performs two Monte Carlo runs at two different 

temperatures in the NVT ensemble, sets up the same initial configuration and 

observes the energy of the systems during the Monte Carlo progress. 

 

Figure 7-8: Schematic representation of the configurational energy during the Monte Carlo 
progress at two different temperatures. The figure inside represents the probability functions of 
each value of the configurational energy. 

MC steps 

U 
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The deviation should satisfy a Gaussian distribution. The standard deviation of 

energy in a canonical ensemble is illustrated in Figure 7-8. Given two pairs of data 

(T1, U1) and (T2, U2) we will extract a relation between U1 and U2 at those two 

different temperatures, using the thermodynamic definition for the constant volume 

heat capacity vC : 

 CV
V

dU
dT

   
 

 (7.3) 

where U now is the total energy of the fluid. 

Considering the assumption that the ideal heat capacity is independent of 

temperature, the relation between U1 and U2 takes the form below 

 2

1
2 1( ) ( ) ( )

T

VT
U T C t dt U T   (7.4) 

in the case, that the constant heat capacity is independent of temperature or it changes 

insignificantly, the corresponding relation being 

 2 1 2 1 1( ) ( ) ( ) ( )VU T C T T T U T     (7.5) 

 
 
 
 
 
 
 
 
 
 

 a                                                              b                                                              
 
Figure 7-9: A schematic view of the configurational energy distribution function, U the standard 
deviation of the potential energy U b.) The energy distribution functions are merely overlapping. 
The mean average of the potential energy increase with temperature 

Coming back to our problem, the potential energy distributions overlap if one runs 

two Monte Carlo simulations in the canonical ensemble at close temperatures as 

shown in Figure 7-9. It is also well known that at higher temperatures the distribution 
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of energy is broader than lower temperatures where is narrower and the advantage has 

been used at replica exchange methods. 

Let us assume the case of observing the configurational energy on the critical 

isochore with temperature, the heat capacity diverges at T=Tc. If you are observing 

the configurational energy on an isochore, different from the critical isochore i.e. 

0.8c the heat capacity becomes maximum at the temperature at which there is phase 

transition and a large difference is found between the configurational energy of the 

subcritical and the supercritical phase. We can qualitatively draw the temperature 

dependence of the internal potential energy across the critical isochore. In the range 

(0.3-1c) the divergence of the isochoric capacity is quite large and energy which 

characterises the subcritical region from supercritical one is quite different, so for 

Monte Carlo is difficult to sample configurations which belong to lower temperatures. 

However, at lower densities than <0.3c that can happen, Monte Carlo can sample 

phase configurations with lower characteristic energy and can be trapped there, 

especially at conditions as the two first points in Figure 7-7. 

 

Cv
and
U

Tc T  
Figure 7-10: Representation of the configurations of the molecules along the critical isotherm. 
The blue colour indicates a high density region (liquid like) and the red colour a low density 
region (gas like) 

 Suspecting this situation, we recorded snapshots during Monte Carlo 

simulation progress. Indeed, the Monte Carlo samples configurations that belong to 

subcritical phase. In the Figure 7-11, we present a snapshot, which belongs to 
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subcritical region. A cross with packed molecules can be seen in the middle of the 

simulation box. If we suppose three axes x, y, z, which meet in the centre of the box 

(0, 0, 0) then a high density profile can be seen for x, y, z values around zero value of 

each axis. The dense area represents the liquid phase. 

 

Figure 7-11: A snapshot at pressure P=2MPa and temperature T=1.02Tc. A high density region 
is formed in the middle of simulation box. 

On the other hand, we did not face this situation with fluoroform and ethane 

simulations. The critical density of fluoroform and ethane is quite high, so all the 

simulated boxes had kept away from low region densities. Monte Carlo simulations 

(Song et al., 2002) have been reported on isotherms close to the critical one for 

fluoroform, but in none of them is at a low density value. 
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In conclusion, we believe  the proper configurations can be sampled during a 

Monte Carlo simulation if efficient schemes for the construction of new states can be 

devised. A recipe is need to discharge configurations belonging to subcritical phase.  
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8 THERMODYNAMIC PROPERTIES OF CARBON 

DIOXIDE 

nvestigation into volumetric and thermodynamic properties of the EPM2 model 

is obligatory, before its usage for studying mixtures of CO2. In this chapter, we 

checked the validity of EPM2 model to reproduce thermodynamic properties 

accurately. The reliability of the EPM2 model is verified by simulating the volumetric 

properties, isothermal compressibility, isochoric heat capacity and diffusivity as a 

function of density at 308.15K of pure carbon dioxide. We adopted two kinds of 

simulation in this study: The NVT molecular–dynamics simulations and the canonical 

Monte Carlo simulations.  

The objective of our work in this chapter is to examine the solvent 

microstructure on the thermodynamic properties of pure CO2 in the supercritical 

region. We have focused our study in an area very close to the critical point 

(T=1.02Tc). We are going to discuss the results as an effect of density 

inhomogeneities in the real supercritical fluid, the ‘correlation induced 

inhomogeitniies’ and the ‘potential-induced inhomogeinities’. The first 

inhomogeineities arise from the long-length-scale critical fluctuations and are 

maximised at the critical point. The second arises from the short-range potential 

interactions and tends to be maximized at rather low densities. 

 

I 
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8.1 INTRODUCTION 

Molecular potentials are an integral part of molecular simulations. It is the 

definition of how a molecule interacts with itself and other molecules. Various levels 

of complexity are available. Simple models will execute quickly but they can’t 

describe the physical extremes. Models that are more complex will theoretically give 

a more accurate description of the actual molecular system, but generally take a long 

time to run. Molecular model EPM2 has chosen for our simulation purposes, since it 

captures its internal energy and runs in a reasonable amount of time. In the previous 

chapter, we examined the validity of the model by investigating the reproduction of 

the potential energy of the model close to the critical isotherm and we verified its 

appropriateness. In this chapter, we extend its validity by examining its performance 

on predicting thermodynamic properties near the critical point. 

8.2 VOLUMETRIC PROPERTIES 

Over the last century, a number of efforts have been devoted to the 

measurements of volumetric properties of carbon dioxide. In 1996, Span and Wagner 

(Span and Wagner, 1996) systematically reviewed the available experimental 

densities over wide range of temperatures and pressure from the triple point to 1100K 

and 800 MPa and they introduced a very accurate equation of state. The National 

Institute of Standards and Technology (NIST) approves the equation of state for CO2 

was developed by Span and Wagner as the current standard. 

As mentioned, we have carried out a series of NVT-MD simulations of scCO2 

in a range of from 60.49 kg/m3 to 769.3 kg/m3 at temperature 308.15 K. Figure 8-1 

shows the simulated pressures as a function of densities in comparison with values 
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predicted from the Span-Wagner EOS (Span and Wagner, 1996) at 308.15 K and the 

experimental data from Zhang et al group (Zhang et al., 2002c). 
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Figure 8-1: The PT phase diagram of pure CO2 with comparison with the predicted one from 
our molecular dynamics studies by using the EPM2 model at temperature 308.15 K and pressure 
range 2-10 MPa (Peos : values from NIST database using Span and Wagner equation of state, 
Psim : simulated values, Pexp : experimental studies Zhang et al., 2002c) 

The Figure 8-1 shows an excellent agreement between the literature values and our 

simulation, this fact is very important as it proves the EPM2 has a great performance 

close to the critical point in predicting volumetric properties. In this study, it was 

important firstly to validate the choice of the intermolecular potentials by comparison 

with the volumetric properties, so direct comparisons with experiments can be made. 

Furthermore, the result is highly encouraging  towards an industrial implementation as 

pressure and temperature are the control parameters. 

During the molecular dynamics simulations, we found that the fluctuation of 

the simulated pressure increasing with the increase of density as we expected as 

pressure is proportional to the derivative of energy. The application of pressure to 

gaseous substances causes a significant reduction in the intermolecular distances. The 

structure is changing from gaseous to liquid-like structure. The packing of molecules 
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is increasing with density. A small change of the position of a molecule at packing 

conditions gives a higher change in potential energy and consequently higher 

fluctuation values for pressure. We present below the fluctuation of pressure at two 

different points. As the estimation of pressure is an ensemble average, we can 

conclude that longer simulations are required at higher densities. 

 

Figure 8-2: Distribution of pressures at two different simulated points. 
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8.3 STRUCTURAL PROPERTIES 

The CO2 radial distribution functions g(r) were computed from system 

snapshots generated in constant-NVT simulations. We calculated the g(r) both from 

molecular dynamics and Monte Carlo, the results we present here come from 

molecular dynamics simulations which both of the results were almost identical. The 

carbon-carbon radial distribution functions, reflecting the distributions of molecular 

centres of mass, over the densities ranging from 60.49 kg/m3 to 712.91 kg/m3 (critical 

density of CO2 is 468 kg/m3) is shown in the Figure 8-4. The radial distribution 

function g(r) has a value of zero for r → 0, because the coincidence of molecules is 

not allowed by repulsion. At the lowest density considered, c-cg ( )r  is clearly gas like, 

but with increasing bulk density, a smooth transition is made to a distinctly liquid like 

form (Clifford, 1999). The peak height decreases with increasing density and a second 

solvation shell appears. The Figure 8-3, shows the location of the first and the second 

solvation shell for a typical liquid, the later the g(r) becomes equal to unity, the later 

the system becomes uncorrelated. 

The obvious change obtained upon increasing the density is the appearance of 

a clear second solvation shell as ones reaches the critical density. One also finds the 

RDF remains distinctly greater than unity to longer distances at the critical density 

than it does at the other two densities shown, a result that is consistent with the 

presence of macroscopic correlation in an SCF in the immediate vicinity of its critical 

point.  

The correlation length becomes maximum at the critical point which translates 

to large simulation boxes in order to perform simulations close to Tc and Pc but as it is 

obvious from the figure, the radial distribution function g(r) reaches the values of 

unity in the box size which means the size of the simulation box is large enough to 
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describe our system. Experimental (Nakayama et al., 2000) studies close to the critical 

point reported a correlation length of 20Å. Taking the limitations of molecular 

simulations into consideration, our box describes properly the supercritical state.  

 

Figure 8-3: Typical form of g(r) for a liquid, we observe short–range order out to at long 
distances, and the structure from first and second solvation shell. This figure is present for better 
comprehension of g(r) functions of carbon dioxide. 
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Figure 8-4: CO2 radial distribution functions for bulk densities of 60.49 kg/m3 (pink line), 419.09 
kg/m3 (brown line) and 712.81 kg/m3 (dark green line) at a temperature of 308.12K. The dashed 
area indicates the area of the first solvation shell.  

 In Figure 8-5, we also present a configurational snapshot for the same density values, 

in order to comprehend the phase behaviour with increasing density. Increasing the 

2 1 
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system density to the critical density increases the fraction of the total volume that 

may be deemed high density, but voids are still observed and a fraction of the 

molecules are either in low-density regions (gas like) or are on the boundary of a high 

density region (liquid-like). As the system is equilibrated at high densities far from the 

critical density, we observe only the high density region (bulk density). 

 

Figure 8-5: Snapshots of supercritical CO2 at densities (in increasing order from left to right. (a) 
60.49 kg/m3 (b) 419.09 kg/m3 and (c) 712.81 kg/m3 each at T = 308.15 K 

It is important to begin our discussion, realizing what the radial distribution 

function expresses. The g(r) function can be thought of as a measure of the structure 

in a system because, it gives the probability of finding a pair of particles a distance r 

apart, relative to the probability that would be expected for a random distribution with 

the same density. In other words, the g(r) can be written like the following equation. 

 ( )( ) id
r dg r

d




r

r
 (8.1) 

where )(r  the density of real fluid and idr)( the density of the ideal fluid. One can 

define local densities in terms of the average numbers of solvent molecules (or atoms) 

found within a given region surrounding the solute. The number of neighbours, n(r) 

can be determined by integrating the radial distribution function using the following 

formula (s notes the distance r in the integral): 
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0

4( ) ( )
rNn r s g s ds

V


   (8.2) 

This number is called the clustering or coordination number which indicates 

the number of solvent molecules around a given molecule. Cluster is a simple and 

practical concept to explain a variety of phenomena in supercritical fluids. We have 

calculated the coordination number for the first solvation shell. The number is equal 

to the average number of solvent molecules in this volume. The upper limit of the 

integral of the radial distribution function, is taken as the position of the first 

minimum of g(r) (which in the present case for the gC-C(r) is around 6.18Å. Arithmetic 

integration has been used. 

We present the numbers of solvent molecules in the first solvation shell 

around a carbon dioxide molecule, plotted as a function of the bulk density at Figure 

8-6.  
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Figure 8-6: Calculated coordination numbers (solid points) as a function of density. The dashed 
line is the result expected for a homogeneous mass distribution in the system. The maximum 
augmentation symbol indicates where the maximum augmentation is expected. 
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As it has been reported firstly by Tucker and co-workers (Tucker, 1999; 

Tucker and Maddox, 1998) in their two dimensional SCF simulations, local density 

inhomogeneities become more pronounced at lower densities to the critical density. 

According to the experimental  studies (Song et al., 2000), it is believed that they are 

maximised at densities around (2/3)c. The local coordination number calculated from 

the area underneath the first solvation shell as it is shown in the Figure 8-4 though the 

equation (8.2). The enhancement is quite strong at densities close to the critical one 

and lower ones. We cannot verify that it takes place at density around (2/3) c exactly. 

However, our results agree with their observations. The enhancement is becoming less 

pronounced at the second solvation shell, but still we can observe that there is a 

difference between the bulk and the local density at Figure 8-7. 
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Figure 8-7: Coordination number at the second solvation shell. The layout and the line styles are 
the same as previous figure. 

We believe this ‘density augmentation’ is a universal behaviour in 

supercritical fluids, indicating that there is a sponge like structure in supercritical 
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phase, but as density increases the fluid looks like dense fog. It can be concluded the 

sponge like structure is pronounced at densities close to critical density, which this 

local structure enhancement can be seen as regions with high and low density in the 

supercritical fluid. 

The local structure around a molecule is definitely important factor for its 

behaviour. At the moment, the lifetime of a configuration, which represents a low or a 

high density structure around a molecule, is not well studied. We can realize the 

importance of studying the lifetime of the local structure, when we suppose the 

molecule is a reacting solute. 

8.4 ISOTHERMAL COMPRESSIBILITY 

Isothermal compressibility is a useful probe of long-range interactions and 

their effect on the microstructure of a supercritical fluid. The isothermal 

compressibility expresses the ability of the molecules in a fluid to pack more tightly, 

and is the macroscopic response of a fluid to an applied pressure. The mathematical 

relationship between molecular packing and   can be written in terms of the radial 

distribution function according to KB theory. 

 2

0

1 4 ( ( ) 1)B TT r g r dr     


    (8.3) 

where B  is the Boltzmann’s constant and v  the density of solvent. The above 

equation was introduced for a system where N may vary (grand canonical ensemble). 

However Matubayasi and Levy (Matubayasi and Levy, 1996) introduced an 

alternative formulation of the KB expression in the Canonical ensemble 
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where N  is the number of solvent molecules in the system,   is the bulk density of 

solvent ( /v vN V  ), uv  is the product of the bulk density of solution and the 

canonical radial distribution function. However, the authors proved that the KB theory 

is valid in other ensembles and the formula in equation (8.3) can be used in the 

Canonical ensemble. Others (Akiya and Savage, 2000a) used KB theory in the 

Canonical ensemble by applying equation (8.3). Using the equation (8.3) we have 

calculated the isothermal compressibility. The isothermal compressibility as a 

function of pressure is shown in Figure 8-8. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 5 6 7 8 9 10 11
P(MPa)

K T
(M

pa
-1

)

 

Figure 8-8: Isothermal compressibility of CO2 T  as a function of pressure at temperature 
T=308.15K. The pressure on axis represents the real pressure of the molecular system. 

The simulation results are in good agreement with behaviour of the isothermal 

compressibility in the supercritical region. However, the absolute value of the peak in 

Figure 8-8 is different from the one in Figure 8-9 but lets have a better look to this. 
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The theory of critical phenomena says that T  becomes infinite along the critical 

isotherm as the system moves close to the critical pressure 
K T

(M
pa

-1
)

 

Figure 8-9: Experimental Isothermal compressibility of CO2 and some mixtures as a function of 
pressure at temperature T=308.15 K. Data (Zhang et al., 2002a). The maximum value of 
isothermal compressibility is observed at 8 MPa. 

In an open system, the isothermal compressibility as we mentioned can be described 

by the equation 





0

)1)(( ex
vvvvvvvv NGdrrg   

The ex
vvN  is the average excess number of carbon dioxide molecules found around 

another molecule of carbon dioxide (g(r) in terms of solvent, subscribt v  denotes the 

solvent), as compared to the number of molecules which would be found in an 

uncorrelated (random) system. The isothermal compressibility for an ideal gas system 

is PT /10  . Hence, the isothermal compressibility of a real system is 
P
N ex

vv
T




1
  

According to the behaviour of isothermal compressibility near the critical point, we 

can deduce that ex
vvN  obtains its maximum value near the critical point. If we express 

the fluctuation of CO2 molecules around a central CO2 molecule in a fixed volume 
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away from the central one, we have NtNN  )( , in which case the isothermal 

compressibility can be written as 

N
NtN

T



)(

  

As T  reaches its maximum near the critical point, it undergoes large fluctuations 

about its average value over time. As MD trajectories through solving the Newton 

equation in order to find the positions of molecules with time, they have a difficulty 

following the fast movement of the molecules in “real” carbon dioxide, so they 

underestimate the value of isothermal compressibility. It also has to be considered that 

these density fluctuations near the critical point are correlated over a long range 

(radial distribution function decays slowly) so that larger systems are required to 

describe properly the molecules that are entering a fixed volume and the molecules 

that are exiting it at a given distance for r in g(r). As fluctuation in local structure is 

high, possibly more time consuming simulations required to improve the accuracy of 

the calculated isothermal compressibilities near critical density. It is not so difficult to 

imagine that this kind of inhomogeneity effects the kinetic energy distribution. 

Sometimes it can cause a serious breakdown even in the constant-temperature 

molecular dynamics simulation by Berendsen method.However, even with these 

improvements it will be a discrepancy between real and of the predicted value because 

of the nature of molecular dynamics and the nature the microscopic structure of the 

real world of fluids. This fact does not reduce the incredible value of the molecular 

dynamics simulations, as they mimic the physical movements of the molecules in the 

compressible regime at a satisfactory level resulting in quite reliable predictions. 
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Figure 8-10: MC Simulation results for Isothermal compressibility of pure CO2 at T = 308.15 K. 
The pressure on axis represents the real pressure of the molecular system. 

The isothermal compressibility was also calculated through Monte Carlo 

simulation with the same technique. Figure 8-10 shows the isothermal compressibility 

versus pressure. The prediction from Monte Carlo simulation has the same 

discrepancy with experimental results. Still, in this case the discrepancy can be 

attributed to limitations of molecular simulations, but it proves that Monte Carlo and 

molecular dynamics have the same limitations near the critical point. As Monte Carlo 

and molecular dynamics give similar results, the limitation can be attributed to 

potential EPM2. 

8.5 DIFFUSIVITY 

The diffusion coefficient in the supercritical region is one of the important 

properties for the design of supercritical fluid extraction and reaction processes. 

Accurate measurements are, however, very difficult especially in the critical region 

where density fluctuations become large. Some experimental results have reported an 

anomalous decrease of diffusion coefficients of solutes at the vicinity of the critical 
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point (Nishiumi et al., 1996). The restriction to thermal motion of the solute molecule 

by formation of clusters near the critical region is considered to be one of the reasons 

for the anomalous diffusivity. Because the transport and solvating properties of a fluid 

depend strongly on its density, an ability to tune the solvent density translates into an 

ability to manipulate the efficiency of separation processes and reaction outcomes. 

Molecular dynamics simulations have historically provided the most detailed 

information about diffusion processes in fluids. However, dynamic properties from 

simulations turn out to be much more sensitive to the selected potential. We have 

calculated the self diffusion coefficient for pure carbon dioxide at 308.15 K. The self 

diffusion coefficient was calculated from the Einstein’s relationship: 

  21lim ( ) (0)
6 i ii

D r t r
t

   (8.5) 

Figure 8-11 compares the self diffusion coefficients for pure CO2 with experimental 

data. Experimental and simulation are generally limited in the gaseous region with 

low pressures in the supercritical region. The first experimental data reported on the 

measurement of self diffusion coefficient was on 1955 (O'Hern and Martin, 1955) and 

these are the only ones close to the critical point. With the developments of 

experimental techniques such as nuclear magnetic resonance and theories, 

measurements under higher pressures with dense gas and liquid phases are available 

with improved accuracies (Etesse et al., 1992; Gross et al., 1998; O'Hern and Martin, 

1955). There are many simulation works of self-diffusion reported in supercritical 

phase but except the work from Higashi and Iwai (Higashi et al., 2000; Iwai et al., 

1997) none is close to the critical point. Up to date, there is a controversial discussion 

about if an anomalous behaviour of motion exists near the critical (Drozdov and 

Tucker, 2001; Drozdov and Tucker, 2002) in a pure solvent. What is well known is 
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that the supercritical fluids exhibit large diffusion coefficients, which resemble those 

of gases than those of liquids.  

The diffusion coefficient in the supercritical region is strongly dependent on 

temperature and pressure D=D(T, P). The temperature dependence of D in isobaric 

change can be interpreted through an Arrhenius plot. Transition state theory can be 

used to interpret the temperature dependence of the diffusion coefficient through the 

equation )/(
0)( RTE

p eDD
 (equivalent to Arrhenius equation). These 

activation energies usually depend on pressure and density (Drozdov and Tucker, 

2001). In the same way, the pressure dependence on the diffusion coefficient can be 

interpreted through an equivalent equation. The slope of the diffusivity with pressure 

gives the activation volume. The activation volume is defined as 

   ln

T const

DV R T
P





      
    (8.6) 

Up to now, we really do not know how or even if, local density inhomogeneities 

affect molecular diffusion coefficients, which is an important transport property 

necessary for the prediction of chemical reaction rates and the design of SCF reactors. 

We present the diffusion coefficient results for the critical isotherm T=1.02Tc. 

The simulation results are in good agreement with experiments studies. Inspection of 

Figure 8-11 shows that the diffusion coefficient of CO2 decreases with increasing 

pressure. Until the pressure reaches the critical pressure, the diffusion coefficient is 

quite large and resembles the one from gas phase after that, the diffusion coefficient 

resembles the one from liquid phase. This fact is in a good agreement with the theory 

of the two supercritical region area divided by a ridge, which the locus of the points 

where the values of the density fluctuation become maximum in isothermal change 

(Nakayama et al., 2000; Nishikawa and Morita, 2000). The same can be deducted 
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from the work of Gross et al (Gross et al., 1998) about their experimental results in 

the supercritical region, that diffusivities on an isotherm for pressures below the one 

corresponding to ridge pressures resembling those of gas phase and above the liquid 

phase ones. Our simulation results agree well with this theory. In the work of Higashi 

et al (Higashi et al., 2000) the carbon dioxide has been treated as united atom from 

which we can concluded that an all atom representation is better than a united one for 

diffusivity prediction close to the critical point.  

 

Figure 8-11: Diffusion coefficient versus pressure at 308.2 K for pure carbon dioxide. a) 
Experimental data (O’Hern and Martin) b) simulation data from our work (sim) c) simulation 
data (Higashi et al) 

On the measurements by O'Hern and Martin we can observe that there is an 

increment on the self-diffusion near the critical pressure. Unfortunately, some existing 

experimental results (Trappeniers and Oosting, 1966) on diffusion in SCFs are 

controversial and do not clarify the situation. On the other hand, experimental 

observations of the self diffusion coefficient of solutes in dilute SCF solutions 

(Nishiumi et al., 1996; Nishiumi and Kubota, 2007; Tsekhans, 1971) slows down 

abruptly near the liquid-gas critical point of these solute-solvent systems. However, 
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our conventional molecular dynamic studies have not revealed any anomaly close to 

the critical point. 

8.6 ISOCHORIC HEAT CAPACITY 

The constant volume heat capacity, VC  can be calculated from the fluctuations 

in potential energy from MC or MD simulations by  

 
22

2
O

V V
B

E E
C C

k T


   (8.7) 

where 22 EE  the potential energy fluctuation, kB is the Boltzmann constant, and 

T is the absolute temperature. O
VC is the ideal gas heat capacity contribution. In case of 

a polyatomic gas like CO2 the ideal partition function is a product of electronic, 

nuclear, rotational, translational and vibrational partition functions. According to the 

procedure being followed in every statistical mechanic text (Van P.Carey, 1999), the 

formulation gives the ideal part of heat capacity for a polyatomic gas as 
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The first term comes from the translational contribution to the heat capacity, the 

second term is the rotational contribution and the last term is due to the vibrational 

degrees of freedom. In the case of carbon dioxide, the rotational contribution is 2/2 

since it is a linear molecule. The calculation of ideal heat capacity through statistical 

mechanics is accurate near the critical temperature, as we can see from Figure 8-12. 

In Figure 8-13, we present the simulated heat capacity in comparison to the 

experimental data and values from Wagner’s equation of state. The simulated results 

are in good agreement, considering the difficulties performing simulations in 



                                                                                                                                    128 

supercritical phase and the fact that the heat capacity is calculated as the second 

derivative of energy.  
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Figure 8-12 . Ideal heat capacity ().Experimental Values from NIST database () Theoretical 
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Figure 8-13: Dependence of VC  on pressure for pure CO2.a) Cvlit data (Zhang et al., 2002c) b) 
data from Molecular Dynamics simulation c) data from NIST database 
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It is of great importance that the value of VC has its maximum close to the 

critical pressure as we can conclude that the molecular potential we used predict and 

describes the supercritical region properly; even at temperatures very close to the 

critical point. The large fluctuations and formation of clusters in the neighbourhood of 

the critical point therefore result in an abnormally large specific heat capacity. The 

finite value of isochoric heat capacity near the critical point is a property depending 

on the number of clusters; in other words, the size and the number of high density and 

low density regions in the solvent. In order to realize better the concept of a cluster, 

we should have in mind that is a dynamic process, which has breaking and formation 

time. The peculiar nature of the supercritical phase, with rapid formation and 

breakdown of clusters and the rapidly increased number of cluster is the reason for 

maximizing the value of the isochoric capacity. The discrepancy between the 

experimental value and the simulated one is because of the limits of molecular 

simulations as we discussed for isothermal compressibility.  
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9 SOLUTION PROPERTIES OF MIXTURES AT 

INFINITE DILUTION 

t has been one of the important subjects in supercritical research to understand 

how the solvent influences chemical reactions. There have been many 

experiments to investigate the solvent effects on the chemical reactions. 

Numerous phenomenological data are available on examining the solution effect on 

reacting solutes, but no universal theory exists to interpret them. The experimental 

approaches are undoubtedly a powerful tool for the investigation of the solvent effects 

on chemical reactions, but a strong theory needs to be established to expand the use of 

supercritical carbon dioxide in industry. 

In this chapter, we look deeply into the solvent effect on the solute. The goal 

of this work is to establish a relation between the degree of aggregation or cavitation 

and thermodynamic properties, such as diffusivity, heat capacity and partial molar 

volumes of the solute. Once more, the Kirkwood and Buff fluctuation theory, which is 

describing non-ideal solutions including supercritical solutions, is used to evaluate the 

micro-environment of the solutions. The objective is to examine the tendency of the 

solvent to form clusters or cavitations across different kind of solutes regarding the 

pressure dependence along a critical isotherm. 

I 
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9.1 INTRODUCTION 

The role of local density in influencing chemistry in supercritical fluids is a 

key element to our understanding of reaction dynamics. At temperatures appreciably 

higher than the critical temperature T>Tc, the solvent fluid itself is rather uniform and 

homogeneous and the isothermal compressibility of the fluid is not large. However, 

when for example a solute with large attractive solute-solvent interactions is placed in 

the fluid, the solvent molecules form a cluster surrounding the solute molecule. The 

number of solvent molecules participating in the cluster under such conditions is 

rather small and they form only the first solvation shells, in contrast to large clusters 

near the critical point 

In traditional solution thermodynamics, the process of solvation can be 

thought of two steps, finding space and occupying it. In previous chapter, we have 

seen the random movements of the molecules cause cavities (void spaces in the fluid) 

to form. The likelihood of a cavity being available to a solute particle is proportional 

to the density of the fluid; dense systems have few large cavities. According to 

conventional theories of solution, somebody expects the cavity must be sufficiently 

sized and shaped to allow a solute particle to move into the cavity during solvation 

process. The size of cavities is maximized close to the critical point. One expects that 

the size of cavitations should pass through a maximum with increasing pressure on a 

critical isotherm. 

9.2 INFINITE DILUTION OF METHANE IN SUPERCRITICAL 

CARBON DIOXIDE 

Experimental observations (Zhang et al., 2002a) found that the addition of 

methane into supercritical carbon dioxide increases the volume of solution. Their 
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group reported large positive partial molar volumes near the critical pressure, which is 

evidence that the system volume increases. While the partial molar volume is a 

macroscopic thermodynamic property, their measurements could be interpreted to 

show the cavitation of carbon dioxide molecules around methane molecule. 

A system, consisting of 999 carbon dioxide molecules and 1 molecule of 

methane, is used to represent the infinite dilution of methane in the supercritical 

carbon dioxide. As the addition of one methane molecule into 999 molecules gives a 

mixture 0,1% per volume, we assume that the critical point of the mixture remains the 

same. The correlation functions were determined by using the centre of each species, 

the carbon atom. We sampled the radial distribution function every 1000 

configurations during MD simulations 

A sampling diagram from the radial distribution functions for Tr = 308.15 K 

over the densities ranging from 135.79 kg/m3 to 712.3 kg/m3 (critical density of CO2 

is 468 kg/m3) for CO2-CH4 is shown in the Figure 9-1. The choppy appearance of the 

solute-solvent radial distribution function is common and has been observed in other 

infinite dilute solute mixtures simulations (Akiya and Savage, 2000b). The Figure 9-1 

shows that the radial distributions functions exhibit a clear difference in appearance at 

subcritical and supercritical densities. The peak height decreases with increasing 

density from subcritical to supercritical ones and a second shell appears which is in 

agreement with theory (Clifford, 1999). Figure 9-2 shows the solute-solvent and 

solvent-solvent radial distribution functions for CO2-CH4 and CO2-CO2 pairs. 

Comparing the Figure 9-1 and Figure 8-4, we can see the trend of the RDF for 

carbon dioxide is strongly dependent on carbon dioxide bulk density compared to 

carbon dioxide-methane interaction. The height of the peaks and the contrasting 
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trends demonstrate that the strength of methane-carbon dioxide interactions relative to 

carbon dioxide-carbon dioxide interactions are lower. 
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Figure 9-1: Pair correlation function for mixture of CH4-CO2 at different densities 
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Figure 9-2: Comparison of pair correlation function obtained for pure CO2 (SS) and mixture of 
CO2-CH4 (Ss) at T = 308.15 K and density equal to 272.79 kg/m3. 
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When we compare the RDFs of solute-solvent and solvent-solvent in the same 

graph (Figure 9-2) it is obvious that the number, exN  which gives the amount of excess 

molecules around a solute molecule, is negative. 

 ( )o
ex v uv vvN G G    (9.1) 

As in our discussion in the previous chapter, we will use the shape of the 

radial distribution function to interpret the results. The clustering number has been 

estimated by integrating the radial distribution function within an appropriate range, r1 

to r2 which defines the solvation shell. It is given by the following equation 
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N g r r dr   (9.2) 

In our case, the g12 is the radial distribution function between the carbon atom of CH4 

and the one from carbon dioxide. The value of r1 is equal to zero and the value of r 2 is 

equal to the distance where the first minimum in g(r) is being observed. In this case 

the upper bound for the integral in our highest densities results, the position of the 

minimum is around 6.68 Å. Actually, the value of r1 is not equal to zero. The value of 

r1 it depends on the size of the molecule and it the closest distance which two 

molecules can approach each other. The values r1-r2 in the integration for the 

calculation of the number of clustering around a methane molecule are different from 

the values used into the integration around a carbon dioxide molecule. So a directly 

comparison of the two coordination number can not be made, but a comparison with 

the coordination number in case that expected when we had a homogeneous fluid can 

be made. 

The isothermal compressibility expresses the gathering of an enormous 

number of solvent molecules. The range of gathering molecules is quite long, and 

becomes maximum for c. The infinite value of the isothermal compressibility near 
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the critical point can be classified as a long-range phenomenon. On the other hand, 

depletion or clustering ordinary indicates the gathering of the solvent molecules of a 

few angstroms and can be classified as a short-range phenomenon.  

We present in Figure 9-3 the coordination number of CO2 molecules around a 

CH4 molecule in a homogeneous fluid at same density and the coordination number of 

CO2 molecules around a CH4 molecule in the real fluid. Comparing the Figure 9-3 and 

Figure 8-6 we can more clearly understand now that the Nex it is a negative number, 

which means that there is a depletion of CO2 molecules around the methane, in other 

words a cavitation exists around the methane molecule. From the two figures, we can 

deduce that the maximum depletion occurs at densities below the critical one. The 

higher cavitation around a methane molecule occurs at densities where the maximum 

local clustering has been observed for the pure carbon dioxide. So, the depletion or 

the clustering is the kind of process occurs in short range around a solute and belongs 

to short range phenomena. In other words the addition of a solute molecule in a 

supercritical fluid in change the microstructure of the supercritical fluid only in a short 

distance around it, it cannot change dramatically the whole microstructure of the 

supercritical fluid. 

Our observation that the addition of methane molecules into the supercritical 

carbon dioxide cause depletion around it, agrees well with experiments. The depletion 

around the methane molecule, leads to expand the volume of solution of the whole 

mixture. This agrees well with experimental studies as Zhang et al reported positive 

partial molar volumes of the dilution of methane into supercritical carbon dioxide. 

However, the solute partial molar volume is a quantity, which maximised at 

the point, where the isothermal compressibility obtains its maximum value on a 

critical isotherm. This means that the partial molar volume at supercritical solutions is 
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a property is connected more with behaviour of bulk density rather than the local 

density. 
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Figure 9-3: Coordination number of CO2 molecules around a methane molecule` (solid line) and 
coordination number (dashed line) of a homogeneous fluid at same density. 

In addition, combining the equations (9.1) and (4.7) we can extract a formula 

connecting the excess or depleted number of molecules around a solute, with the 

solute partial molar volume at infinite dilution. We obtain: 



ex

u
NV 

 1  

According to this formula if we calculate the solute partial molar volume in the first 

solvation shell it will appears to go through a maximum near (2/3)c. However, the 

solute partial volume diverges close to critical density along an isotherm. Based on 

the fact we can conclude partial molar volume is a macroscopic property, which 

reflects more the nature of the solvent rather than the nature of local interactions. 
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The formation of cavitations around repulsive solutes is an interesting process 

but to the best of our knowledge, there is no industrial application using this feature. 

We believe this kind of solvent can used as co-solvents in order to expand the 

common features (clustering) of supercritical fluids. All the supercritical solutions in 

technological applications are cases of attractive clustering mixtures e.g., 

decaffeination of coffee and other examples of supercritical fluid extraction, 

supercritical chromatography, sorbent regeneration by supercritical fluids. These 

mixtures are characterised by large negative solute partial molar volumes near the 

solvent critical point. The mixture of water and supercritical carbon dioxide belongs 

to that category. We will examine that system in the next section. 

9.3 INFINITE DILUTION OF WATER IN SUPERCRITICAL 

CARBON DIOXIDE 

The research group of (Zhang et al., 2002a) reported negative partial molar 

volumes of water and carbon dioxide at infinite dilution. We followed exactly the 

same approach as in the case of methane with carbon dioxide, in order to examine the 

microstructure of the solution. We present the coordination number of CO2 around a 

water molecule in Figure 9-4. There is an enhancement of local density around the 

water molecule. The degree of density enhancement is stronger than those of a CO2 

molecule. According to  experimental studies (Song et al., 2000) the larger degree of 

clustering appears at densities below the critical one. Figure 9-4 shows the maximum 

clustering occurs at densities around 300 kg/m3. Our simulation results are in line with 

experimental observations and we can verify that the maximum degree of clustering 

occurs at  densities around (2/3)c for an attractive solute.  
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Figure 9-4: Coordination number of CO2 molecules around a water molecule` (solid line) and 
coordination number (dashed line) of a homogeneous fluid at same density 

9.4 THERMODYNAMIC PROPERTIES OF MIXTURES AT 

INFINITE DILUTION 

9.4.1 Diffusivity  
We calculated diffusion coefficients of one methane molecule in supercritical 

carbon dioxide (repulsive mixture) and one water molecule in supercritical carbon 

dioxide (attractive mixture). The results are being presented in Figure 9-5. The tracer 

diffusion coefficient for both methane and water goes abruptly to zero close to the 

critical point. The reason is to investigate characteristics of the cluster structure 

around the water molecule and the cavitation structure around the methane molecule. 

We used the normal Einstein’s relation to estimate the diffusion coefficient D. Up to 

date there two concepts used to explain the reason for the drastic change of the 

diffusion coefficient near the critical pressure along an isotherm. One is the change in 

effective mass of the cluster caused by solvent molecules around the solute molecule, 
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and another is the density fluctuation of the solvent fluid where the solute molecules 

move. We believe that the first concept is most likely not the origin of the anomalous 

decrease of diffusivity near the critical point. There are two facts that disagree with 

this concept. Firstly, if the clustering would have a restrictive role on the solute 

movement, the diffusivity would be expected to have an anomalous behaviour at 

densities where the maximum local density enhancement has been observed. 

Secondly, a repulsive mixture should not exhibit an decrease in diffusivity but rather 

an increase as the solute molecule is in the middle of a cavitation and has a lot of 

room to move. In other words it is not the clustering, which forbids the solute from 

moving. The anomalous diffusivity has been observed for an attractive solute at 

infinite solution at density close to the critical one as well as a repulsive solute. This 

phenomenon has been observed for both systems in the region of the phase diagram, 

which is characterised by spatially extended fluctuations in the fluid density. We 

believe the extent of these fluctuations is related to the anomalous solute diffusion 

coefficient for both, the attractive and the repulsive solute. 

In order to understand the anomalous diffusivity, it is necessary to realize the 

nature of the microenvironment around the solute. Furthermore, it is necessary to 

understand beyond the description provided by the radial distribution function around 

the solute, as this indicator describes only the average of all the environments found 

within the fluid. For an attractive solute, the distribution of microstructures containing 

the solute is changing rapidly over the time near the critical point. The same is 

happening for a repulsive solute too. The rapid rearrangement of the microstructure 

around the solute does not give free space for the solute to move. The instantaneous 

environment around the solute in a short range changes so dramatically with time, that 
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the free positions for an attractive solute or a repulsive one are always engaged 

restricting the motion of the solute molecule. 
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Figure 9-5: Dependence of tracer diffusion coefficient on pressure of i) a CO2 molecule in pure 
CO2 ii) a CH4 molecule in CO2 and iii)a  H2O molecule in CO2 .Solutions 0.1mol% and 
temperature  308.15K. 

Moreover, our explanation is in agreement with the kinetic theory of gases. 

The molecules in a gas move with quite high speeds. If a little ammonia gas is 

released at one end of a room, however, an appreciable time elapses before the smell 

is noticed at the opposite end. The reason for the slowness is that the molecules are 

constantly entering into collisions, so that the long path, which a single molecule 

would describe if it were unimpeded, is broken up into a very large number of zigs-

zags in all directions. Since, the mobility of solvent molecules is maximed near the 

critical point; the solute molecule is constantly deflected by collisions with solvent 

molecules, so the free path is very short. Its position is nearly stationary resulting in 

zero diffusion coefficients. 

9.4.2 Isochoric Heat Capacity  
Constant volume heat capacity (CV) is directly related with internal energy, 

and thus can provide information about the intermolecular interaction in the system. 
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CV of a mixed fluid depends mainly on its composition and intermolecular 

interactions. At a fixed composition, CV should depend mainly on the intermolecular 

interaction. CV has a weak divergence at the critical point, which implies that is 

connected with the first and second solvation shell (radial distribution function) 

instead of the tail, as it is the case with isothermal compressibility. In other words 

these means that the isochoric heat capacity is related to structure of the molecules in 

short distance around it compare to molecules at long distance. 

Furthermore, CV of pure components or mixtures is nearly independent of 

pressure in high pressure region, indicating that the intermolecular interaction is not 

sensitive to pressure as the fluid is far from the critical region of the mixed fluids. In 

the critical region, the Cv depends on pressure and is sensitive to composition because 

of the nature of the supercritical phase. 
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The first peak of the radial distribution function represents a statistical average 

of the neighbours around a chosen molecule. As we have explained in the section 8.4, 

the observed structure around a central molecule, it fluctuates with the time. In the 

case of methane and carbon dioxide, we have a depletion (lack of molecules) around 

the methane molecule. In the case of water and carbon dioxide mixture we have an 

enhancement (excess of molecules) around the water molecule. The way the 

microenvironment changes around a solute molecule with time become faster when 

isothermal compressibility obtains its maximum value. We believe that the larger rate, 

i.e. the speed the molecules come into and leave the tagged area around a solute in the 

high compressible regime is the reason for the maxima in the curves. An increase in 

temperature results in decrease in the degree of clustering. Some of the members in 

the clusters enter into the bulk, which needs some additional energy. Therefore, the 

largest Cv indicates higher clustering. On the basis of this discussion, it can be 

deducted that breaking the clusters at the supercritical conditions is an endothermic 

process. The cluster formed around a water molecule is strongly holding together 

(strong attractive forces between the solute molecule and solvent molecules) which is 

more difficult to break than a pure CO2 cluster. On the other hand, the cluster around 

the methane molecule is a weak one (weak attractive forces) and can be easier broken 

than pure CO2. This fact explains why the solution of water in supercritical carbon 

dioxide increases the heat capacity while the solution of methane decreases it. 
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10 CONCLUSION AND FUTURE WORK 

n this work, we have successfully employed molecular simulation methods 

using the potential model EPM2 to derive different thermodynamic properties 

of pure carbon dioxide, a mixture of methane-carbon dioxide and a mixture of 

water-carbon dioxide at infinite solution. The transferability of EPM2 model to the 

supercritical region has been studied through a comprehensive comparison between 

calculated values of several thermodynamic properties for CO2 and experimental 

values. 

Molecular simulation, although having plenty of room for improvement, can 

be reliably used to study difficult systems like supercritical fluids where experimental 

observations are problematic. Moreover, they provide an insight to the systems on 

atomic scale which enables us to establish a relationship between intermolecular 

potential and thermodynamic properties. In our study however, we identified a 

problem of MC being unable to predict realistic property values in the low density 

region. The reason for this is the trapping of MC sampling in unphysical 

configurations. 

Beyond pure supercritical fluids, supercritical mixtures at infinite dilution can 

be studied with the existence of valid molecular force fields. We also observed some 

deviations in the results of isothermal compressibility and heat capacity from 

experimental data. These deviations however were due to computational limitations 

rather than the employed methodology.  

Beside the usefulness of molecular simulation in predicting fluid properties in 

the supercritical region, it gives an insight in events at microscopic level with time 

and space. It enables us to calculate numerically the radial distribution function which 

I 
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we used to examine the microstructure of supercritical conditions with regard to local 

structure using the KB theory  

In the application of the KB theory to the systems  

1. Pure carbon dioxide 

2. Infinite dilution of methane in carbon dioxide 

3. Infinite dilution of water in carbon dioxide 

We identify three types of local microstructure. 

Type A. There is local density enhancement of CO2 around a CO2 molecule. 

This density enhancement is more pronounced at densities below the critical one (ca. 

2/3ρc). In other words there is a sponge like structure of CO2 molecules in 

supercritical region which is more evident at densities below the critical density along 

an isotherm. Type B. There is also a density enhancement around a water molecule in 

CO2 molecules. This has been identified as an excess of CO2 molecules around a 

water molecule. Rephrasing, the water molecule prefers to solvate in high density 

region of carbon dioxide. Type C. There is a density depletion of CO2 molecules 

around a methane molecule. In this situation, this has been identified as a deficit of 

CO2 molecules around a methane molecule. In other words, the water molecule 

prefers to solvate in areas where there is cavitation. 

An apparently counter-intuitive point in the three different pictures of 

solvation is that they follow the same trend. They show the most anomalous 

behaviour at the same densities along the critical isotherm. Two unrelated solutes, 

when being dissolved in supercritical carbon dioxide, follow somehow a ‘universal’ 

behaviour, despite the fact that they follow a different type of solvation. This 

universal behaviour is related more to the properties of the supercritical carbon 

dioxide rather than the properties of the individual solutes, water or methane. In other 
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words the structure of carbon dioxide is very important in any solvation at 

supercritical conditions. The density augmentation or depletion is not caused by the 

solute, but rather it is due to the pre-existing densities inhomogenities in the pure 

solvent. The solute only shows a preference to dissolve in a high density region or low 

density region. 

Furthermore, this apparently ‘universal’ behaviour is observed also for 

diffusion coefficients. The diffusion coefficient of methane in the supercritical carbon 

dioxide drops abruptly to zero, the same as in the case of water. Furthermore, this 

drop happens around the same density. We noted that the density where this is 

observed coincides with that where fluctuations in local density obtain their maximum 

value. We suggest that the rapid movement of CO2 around a solute molecule is the 

driving force for zero values of diffusion coefficients. The rapid movement of solvent 

molecules around a solute restricts the motion of the solute and gives zero values of 

solute diffusion coefficients. 

It can be concluded that the nature of the solvent is crucial in any observed 

pure or solvation property. This nature is yet not well understood and is still a matter 

of debate. We believe the preference of the solute to move in a high density region or 

low density region and the high density fluctuations near the critical point are most 

likely responsible for any peculiarities in pure or solvation properties. To date little 

work has been done about the instantaneous environment of a solute molecule in a 

supercritical fluid. This will help us to understand a second key characteristic of 

supercritical nature not their fluctuation in space but their fluctuation with time. This 

is an important factor for reaction dynamics in solvent-influenced chemical reactions. 

At the present time, the principal source of information on the instantaneous structure 
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is computer simulations. We believe an important aspect that has to be studied along a 

supercritical isotherm with pressure is the size a cavitations or clusters with time.  

On the basis of our study, one can now imagine a general mechanism of a 

solution chemical reaction from a microscopic point of view. The solution-chemical 

reaction is viewed as a passage of a solute molecule over the solute potential-energy 

barrier, accompanied by solvent influence. The solvent, in general, play three distinct 

roles. 

First, some solvent molecules themselves become involved in the 

rearrangement of molecules around the solute providing clustering or depletion 

environment. In turn, they can modify the solute electronic state through electrostatic, 

exchange, polarization, and dispersion interactions and deform the solute potential-

energy surface. Such a modification should influence the potential-energy barrier 

itself along the reaction coordinate but also the properties of transition state. Second, 

the interaction energy between the solute and solvent molecules sometimes induces a 

considerable configurational change of the solute molecule and results in another 

stabler configuration by reflecting the energetic balance between the solute potential 

and the solute-solvent interaction energy as we have seen for cases of isothermal heat 

capacity. Third, the reaction energy required to surmount the potential-energy barrier 

should be supplied from the surrounding solvent molecules through the solvent energy 

fluctuation. The solvent-solvent and the solute-solvent interactions should play such 

roles as the energy source of supply. 

We can conclude that new parameters have to be introduced to describe the 

structure of supercritical phase. The local pressure around a solute with time is one of 

them, it will help us to explain many reaction phenomena. Alternatively, we have to 

realize that there is local-bulk anisotropy in pressure which is an important key in any 
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micro-kinetic analysis, especially at supercritical fluid/solid interfaces, kinetics of 

adsorption. Furthermore, by defining local pressure we will understand better 

transition state kinetics and will choose the proper solvation environment in a solvent 

phase or microporous environment.  

Another future research direction is the possibility that reactant-reactant 

(solute-solute) clustering can occur that in turn will affect reaction kinetics. KB theory 

with some corrections might still be used for such treatments. We believe this work of 

fundamental nature will help understand the performance of supercritical fluids as 

reactions media. 
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11 APPENDIX 

This is program selected at random. It is describing the initialization the equilibration 
process  

!---------------- 
PROGRAM BOX 
!---------------- 
 
! . Module declarations. 
USE DYNAMO 
 
IMPLICIT NONE 
 
! . Program parameters. 
INTEGER,            PARAMETER :: NCHANGES = 10 
REAL ( KIND = DP ), PARAMETER :: BIGSIZE  = 10.0_DP 
 
! . Thermodynamic conditions (NVT) 
REAL ( KIND = DP ), PARAMETER :: DENSITY = 973.1_DP        !kg m^-3. 
 
! . Monte Carlo Simulation Options 
REAL ( KIND = DP ), PARAMETER :: P =   14.4_DP/0.101325_DP !atm 
REAL ( KIND = DP ), PARAMETER :: T = 310.00_DP             !kelvin 
REAL ( KIND = DP ), PARAMETER :: ACC = 0.40_DP             !dimensionless 
INTEGER           , PARAMETER :: NVT=0                     !NVT simulation 
INTEGER           , PARAMETER :: NPT=500                   !NPT simulation 
 
! . Program scalars. 
INTEGER            :: ICHANGE 
REAL ( KIND = DP ) :: NEWSIDE, REDUCE, SIDE, TARGET, VOLUME 
 
! . Program arrays. 
REAL ( KIND = DP ), ALLOCATABLE, DIMENSION(:,:) :: COORDINATES 
 
! . Output File 
open(6,file="results/box=(1000 , 49.68 , 310.00).out") 
 
CALL DYNAMO_HEADER 
 
CALL TIME_PRINT 
 
CALL ZMATRIX_DEFINE ( "../data/zmatrix/CF3.zmatrix" ) 
 
CALL ZMATRIX_BUILD 
 
CALL COORDINATES_WRITE 
 
ALLOCATE ( COORDINATES(1:3,1:NATOMS) ) ; COORDINATES = ATMCRD 
 
CALL MM_FILE_PROCESS     ( "solvent.opls_bin", 
"../data/opls_aa/solvent.opls" ) 
 
CALL MM_SYSTEM_CONSTRUCT ( "solvent.opls_bin", "../data/seq/CF3_box1000.seq" 
) 
 
CALL MM_SYSTEM_WRITE     ( "../data/sys_bin/CO2_CF3box1000.sys_bin" ) 
 
 
! . Calculate the volume of a box that gives the appropriate density 
(Angstroms^3). 
VOLUME = ( SUM ( ATMMAS(1:NATOMS) ) / DENSITY ) * ( AMU_TO_KG * 1.0E+30_DP ) 
 
! . Calculate the dimension of a cubic box of the same volume (Angstroms). 
TARGET = EXP ( LOG ( VOLUME ) / 3.0_DP ) 
 
! . Start off with a very large box. 
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SIDE = BIGSIZE * TARGET 
 
! . Calculate the reduction factor. 
REDUCE = EXP ( - LOG ( BIGSIZE ) / REAL ( NCHANGES, DP ) ) 
 
! . Assign a value to the box size. 
CALL SYMMETRY_CUBIC_BOX ( SIDE ) 
 
! . Generate coordinates for each molecule. 
CALL SET_INITIAL_COORDINATES 
 
! . Initialize the random number seed. 
CALL RANDOM_INITIALIZE (314159) 
 
! . Define the options for the Monte Carlo modules. 
CALL MONTE_CARLO_ENERGY_OPTIONS ( CUTOFF = 0.45_DP*TARGET, SMOOTH = 0.0_DP ) 
 
! . Do a Monte Carlo simulation (at constant volume). 
CALL MONTE_CARLO ( 10, 10 * NRESID, VOLUME_FREQUENCY = NVT 
,PRESSURE=P,TEMPERATURE=T) 
 
! . Gradually reduce the size of the box to the desired value. 
DO ICHANGE = 1,NCHANGES 
 
   ! . Calculate and set the new box length. 
   NEWSIDE = REDUCE * SIDE 
   CALL SYMMETRY_CUBIC_BOX ( NEWSIDE ) 
 
   ! . Scale the coordinates. 
   CALL SET_INTERMEDIATE_COORDINATES 
 
   ! . Do a Monte Carlo simulation (at constant volume). 
   CALL MONTE_CARLO ( 10, 10 * NRESID, VOLUME_FREQUENCY = NVT 
,PRESSURE=P,TEMPERATURE=T) 
 
   ! . Reset SIDE. 
   SIDE = NEWSIDE 
 
END DO 
 
! . Save ccordinates 
CALL COORDINATES_WRITE ( "../data/box(CF3)/NVT=(1000 , 973.1 , 
310.00)(0).crd" ) 
CALL PDB_WRITE         ( "../data/box(CF3)/NVT=(1000 , 973.1 , 
310.00)(0).pdb" ) 
 
! . Do a final MC calculation for a fuller equilibration. 
CALL MONTE_CARLO ( 200, 100000, PRESSURE=P,TEMPERATURE=T,  ACCEPTANCE=ACC, 
VOLUME_FREQUENCY = NVT) 
 
! . Save the coordinates 
CALL COORDINATES_WRITE ( "../data/box(CF3)/NVT=(1000 , 973.1 , 
310.00)(1).crd" ) 
CALL PDB_WRITE         ( "../data/box(CF3)/NVT=(1000 , 973.1 , 
310.00)(1).pdb" ) 
 
! . Deallocate the temporary arrays. 
DEALLOCATE ( COORDINATES ) 
 
! . Finish up. 
CALL TIME_PRINT 
 
!===========================================================================
==== 
CONTAINS 
!===========================================================================
==== 
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   !--------------------------------- 
   SUBROUTINE SET_INITIAL_COORDINATES 
   !--------------------------------- 
 
   ! . Local scalars. 
   INTEGER :: I, START, STOP 
 
   ! . Loop over the residues. 
   DO I = 1,NRESID 
 
      ! . Set the initial values of the coordinates. 
      START = RESIND(I)+1 
      STOP  = RESIND(I+1) 
      ATMCRD(1:3,START:STOP) = COORDINATES 
 
      ! . Randomly translate the molecule within the box. 
      CALL TRANSLATE ( ATMCRD(1:3,START:STOP), SIDE * ( RANDOM_VECTOR ( 3 ) 
- 0.5_DP ) ) 
 
   END DO 
 
   END SUBROUTINE SET_INITIAL_COORDINATES 
 
   !-------------------------------------- 
   SUBROUTINE SET_INTERMEDIATE_COORDINATES 
   !-------------------------------------- 
 
   ! . Local scalars. 
   INTEGER            :: I, START, STOP 
   REAL ( KIND = DP ) :: SCALE 
 
   ! . Local arrays. 
   REAL ( KIND = DP ), DIMENSION(1:3) :: DR 
 
   ! . Calculate the scale factor for changing the coordinates of the 
molecular centers. 
   SCALE = NEWSIDE / SIDE 
 
   ! . Translate the coordinates of the atoms in each molecule. 
   DO I = 1,NRESID 
 
      ! . Find the atom indices for the molecule. 
      START = RESIND(I)+1 
      STOP  = RESIND(I+1) 
 
      ! . Find the translation. 
      DR = ( SCALE - 1.0_DP ) * CENTER ( ATMCRD(1:3,START:STOP), 
ATMMAS(START:STOP) ) 
 
      ! . Translate the molecule by the required amount. 
      CALL TRANSLATE ( ATMCRD(1:3,START:STOP), DR ) 
 
   END DO 
 
   END SUBROUTINE SET_INTERMEDIATE_COORDINATES 
 
END PROGRAM BOX     
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DL POLY : Control file  
SCO2 at T=308.15 and P=7.5 MPa  
 
integration leapfrog verlet 
 
temperature      308.15 
pressure         0.075 
ensemble nvt berendsen 0.5 
 
steps              1000000 
equilibration       500000 
multiple step         4 
scale                10 
# collect  
print               1000 
stack               1000 
stats               1000   
trajectory        500000         500         0 
rdf                   100 
 
timestep         0.002 
primary cutoff   25.8 
cutoff           29.0 
delr width       1.2000 
rvdw cutoff      29.0 
reaction field  
eps constant     78.000 
cap forces       1000. 
#shake tolerance  1.0E-3 
quaternion tolerance  1.0E-5 
zdensity  
print rdf  
 
job time              540000 
close time            6600 
 
finish    
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