88 research outputs found

    Pan-European sustainable forest management indicators for assessing Climate-Smart Forestry in Europe

    Get PDF
    The increasing demand for innovative forest management strategies to adapt to and mitigate climate change and benefit forest production, the so-called Climate-Smart Forestry, calls for a tool to monitor and evaluate their implementation and their effects on forest development over time. The pan-European set of criteria and indicators for sustainable forest management is considered one of the most important tools for assessing many aspects of forest management and sustainability. This study offers an analytical approach to selecting a subset of indicators to support the implementation of Climate-Smart Forestry. Based on a literature review and the analytical hierarchical approach, 10 indicators were selected to assess, in particular, mitigation and adaptation. These indicators were used to assess the state of the Climate-Smart Forestry trend in Europe from 1990 to 2015 using data from the reports on the State of Europe's Forests. Forest damage, tree species composition, and carbon stock were the most important indicators. Though the trend was overall positive with regard to adaptation and mitigation, its evaluation was partly hindered by the lack of data. We advocate for increased efforts to harmonize international reporting and for further integrating the goals of Climate-Smart Forestry into national-and European-level forest policy making

    Effects of the lack of forest management on spatiotemporal dynamics of a subalpine Pinus cembra forest

    Get PDF
    Knowledge about the stand structure and dynamics of subalpine forests is crucial to preserve their multifunctionality. In the present study, we reconstructed the spatiotemporal dynamics of a subalpine Pinus cembra forest in the eastern Italian Alps in response to natural disturbances and forest management. We adopted a concurrent point pattern, dendroecological and growth dominance (GD) analysis. We mapped and measured all trees of Pinus cembra and Larix decidua in a 1 ha plot. We analyzed intra- and interspecific spatial patterns and spatial autocorrelation of tree size and age. We explored establishment dynamics and shifts in competition by analyzing growth suppression/release patterns and GD trends. Results showed a clumped, uneven-aged, multilayered structure where pine was dominant. The synergic action of ecological and human-induced factors is discussed to explain the prevalence of pine over time. Spatial pattern and autocorrelation analyses suggest a different colonization strategy of the two species, in which pine established after small-scale perturbations and experienced a stronger inter- and intra-specific competition. The interruption of tree establishment and shift in GD toward large trees resulting from the lack of forest management are the most important findings of this research. This highlights the importance of an active management to avoid the homogenization of the forest structure that is generally associated with a reduction in biodiversity and protective ability of forests

    The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in northeastern Poland

    Get PDF
    The diet of the red fox Vulpes vulpes was investigated in five regions of northeastern Poland by stomach content analysis of 224 foxes collected from hunters. The red fox is expected to show the opportunistic feeding habits. Our study showed that foxes preyed mainly on wild prey, with strong domination of Microtus rodents, regardless of sex, age, month and habitat. Voles Microtus spp. were found in 73% of stomachs and constituted 47% of food volume consumed. Other food items were ungulate carrion (27% of volume), other mammals (11%), birds (9%), and plant material (4%). Sex- and age-specific differences in dietary diversity were found. Adult males and juvenile foxes had larger food niche breadths than adult females and their diets highly overlapped. Proportion of Microtus voles increased from autumn to late winter. Significant habitat differences between studied regions were found. There was a tendency among foxes to decrease consumption of voles with increasing percentage of forest cover. Based on our findings, red foxes in northeastern Poland can be recognized as a generalist predators, consuming easily accessible and abundant prey. However, high percentage of voles consumed regardless of age, sex, month, or habitats may indicate red fox specialization in preying on Microtus rodents

    Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx)

    Get PDF
    Detailed knowledge of the variation in demographic rates is central for our ability to understand the evolution of life history strategies and population dynamics, and to plan for the conservation of endangered species. We studied variation in reproductive output of 61 radio-collared Eurasian lynx females in four Scandinavian study sites spanning a total of 223 lynx-years. Specifically, we examined how the breeding proportion and litter size varied among study areas and age classes (2-year-old vs. >2-year-old females). In general, the breeding proportion varied between age classes and study sites, whereas we did not detect such variation in litter size. The lack of differences in litter sizes among age classes is at odds with most findings in large mammals, and we argue that this is because the level of prenatal investment is relatively low in felids compared to their substantial levels of postnatal care

    Resource Selection and Its Implications for Wide-Ranging Mammals of the Brazilian Cerrado

    Get PDF
    Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing that a multi-faceted approach is required to protect these species

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio
    corecore