188 research outputs found

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Integrated digital avionics to improve aircraft environmental control systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77327/1/AIAA-46929-196.pd

    Line shape measurements of rubidium 5S-7S two-photon transition

    Get PDF
    We report the use of a digital lock to measure the line profile and center frequency of rubidium 5S-7S two-photon transitions with a cw laser referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference

    Extension of Earth-Moon libration point orbits with solar sail propulsion

    Get PDF
    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail induced acceleration, families of Lyapunov, halo, vertical Lyapunov, Earth-centred, and distant retrograde orbits are created. As the solar sail circular restricted three-body problem is non-autonomous, a constraint defined within the differential correction scheme ensures that all orbits are periodic with the Sun’s motion around the Earth-Moon system. The continuation method then starts from a classical libration point orbit with a suitable period and increases the solar sail acceleration magnitude to obtain families of orbits that are parametrised by this acceleration. Furthermore, different solar sail steering laws are considered (both in-plane and out-of-plane, and either fixed in the synodic frame or fixed with respect to the direction of sunlight), adding to the wealth of families of solar sail enabled libration point orbits presented. Finally, the linear stability properties of the generated orbits are investigated to assess the need for active orbital control. It is shown that the solar sail induced acceleration can have a positive effect on the stability of some orbit families, especially those at the L2 point, but that it most often (further) destabilises the orbit. Active control will therefore be needed to ensure long-term survivability of these orbits

    Cs Fountain Clocks for Commercial Realizations—An Improved and Robust Design

    Get PDF
    We report on the design, assembly, testing, and delivery of a series of new cesium fountain primary frequency standards built through commercial and scientific collaboration with international users. The new design, based on proven National Physical Laboratory solutions, improves reliability, simplicity of operation, and transportability. The complete system consists of a novel physics package, a specially developed optical package, and dedicated electronics for system control. We present results showing that despite their simplified and more compact design, the new fountains have state-of-the-art performance in terms of signal-to-noise ratio and robust long-term operation. With a sufficiently low-noise local oscillator, they are capable of reaching a short-term stability below 3×10143\times 10^{-14} (1 s) and have potential accuracy in the low 101610^{-16} range, similar to the best cesium fountains currently in operation. This cost-effective solution could be used to increase the availability of accurate frequency references and timescales and provide redundancy in critical locations

    A comparison of body composition assessment methods in climbers: Which is better?

    Get PDF
    Objective To compare body composition estimations of field estimation methods: Durnin & Womersley anthropometry (DW-ANT), bioelectrical impedance analysis (BIA) and Deborah-Kerr anthropometry (DK-ANT) against dual-energy X-ray absorptiometry (DXA) in a male Chilean sport climbing sample. Methods 30 adult male climbers of different performance levels participated in the study. A DXA scan (Lunar Prodigy (R)) was used to determine fat mass, lean mass and total bone mineral content (BMC). Total muscle mass (MM, kg) was estimated through a validated prediction model. DW-ANT and BIA ("non-athletes" and "athletes" equations) were used to determinate fat mass percentage (FM %), while DK-ANT was utilized to estimate MM and BMC. Results A significant (p<0.01) inter-method difference was observed for all methods analyzed. When compared to DXA, DW-ANT and BIA underestimated FM% and DK-ANT overestimated MM and BMC (All p< 0.01). The inter-method differences was lower for DW-ANT. Discussion We found that body composition estimation in climbers is highly method dependent. If DXA is not available, DW-ANT for FM% has a lower bias of estimation than BIA in young male Chilean climbers. For MM and BMC, further studies are needed to compare and estimate the DK-ANT bias level. For both methods, correction equations for specific climbing population should be considered
    corecore