203 research outputs found

    Intensified surveillance after surgery for colorectal cancer significantly improves survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postoperative surveillance after curative resection for colorectal cancer has been demostrated to improve survival. It remains unknown however, whether intensified surveillance provides a significant benefit regarding outcome and survival. This study was aimed at comparing different surveillance strategies regarding their effect on long-term outcome.</p> <p>Methods</p> <p>Between 1990 and 2006, all curative resections for colorectal cancer were selected from our prospective colorectal cancer database. All patients were offered to follow our institution's surveillance programm according to the ASCO guidelines. We defined surveillance as "intensive" in cases where > 70% appointments were attended and the program was completed. As "minimal" we defined surveillance with < 70% of the appointments attended and an incomplete program. As "none" we defined the group which did not take part in any surveillance.</p> <p>Results</p> <p>Out of 1469 patients 858 patients underwent "intensive", 297 "minimal" and 314 "none" surveillance. The three groups were well balanced regarding biographical data and tumor characteristics. The 5-year survival rates were 79% (intensive), 76% (minimal) and 54% (none) (OR 1.480, (95% CI 1.135-1.929); <it>p </it>< 0.0001), respectively. The 10-year survival rates were 65% (intensive), 50% (minimal) and 31% (none) (<it>p </it>< 0.0001), respectively. With a median follow-up of 70 months the median time of survival was 191 months (intensive), 116 months (minimal) and 66 months (none) (<it>p </it>< 0.0001). After recurrence, the 5-year survival rates were 32% (intensive, <it>p </it>= 0.034), 13% (minimal, <it>p </it>= 0.001) and 19% (none, <it>p </it>= 0.614). The median time of survival after recurrence was 31 months (intensive, <it>p </it>< 0.0001), 21 months (minimal, <it>p </it>< 0.0001) and 16 month (none, <it>p </it>< 0.0001) respectively.</p> <p>Conclusion</p> <p>Intensive surveillance after curative resection of colorectal cancer improves survival. In cases of recurrent disease, intensive surveillance has a positive impact on patients' prognosis. Large randomized, multicenter trials are needed to substantiate these results.</p

    Comprehensive evaluation of coding region point mutations in microsatellite-unstable colorectal cancer

    Get PDF
    Microsatellite instability (MSI) leads to accumulation of an excessive number of mutations in the genome, mostly small insertions and deletions. MSI colorectal cancers (CRCs), however, also contain more point mutations than microsatellite-stable (MSS) tumors, yet they have not been as comprehensively studied. To identify candidate driver genes affected by point mutations in MSI CRC, we ranked genes based on mutation significance while correcting for replication timing and gene expression utilizing an algorithm, MutSigCV. Somatic point mutation data from the exome kit-targeted area from 24 exome-sequenced sporadic MSI CRCs and respective normals, and 12 whole-genome-sequenced sporadic MSI CRCs and respective normals were utilized. The top 73 genes were validated in 93 additional MSI CRCs. The MutSigCV ranking identified several well-established MSI CRC driver genes and provided additional evidence for previously proposed CRC candidate genes as well as shortlisted genes that have to our knowledge not been linked to CRC before. Two genes, SMARCB1 and STK38L, were also functionally scrutinized, providing evidence of a tumorigenic role, for SMARCB1 mutations in particular. © 2018 The Authors. Published under the terms of the CC BY 4.0 licensePeer reviewe

    Towards a framework for work package allocation for GSD

    Get PDF
    Proceeding of: Proceeding of: OTM 2011 Workshops: Confederated International Workshops and Posters: EI2N+NSF ICE, ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011Global software development is an inexorable trend in the software industry. The impact of the trend in conventional software development can be found in many of its aspects. One of them is task or work package allocation. Task allocation was traditionally driven by resource competency and availability but GSD introduces new complexities to this process including time-zones differences, costs and cultural differences. In this work a report on the construction of a framework for work-package allocation within GSD projects is presented. This framework lies on three main pillars: individual and organizational competency, organizational customization and sound assessment methods.This work is supported by the Spanish Centro para el Desarrollo TecnolĂłgico Industrial (CDTI) under the Eureka Project E! 6244 PROPS-Tour and the national cooperation project SEM-IDi (IDI-20091150)

    Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme

    Get PDF
    Background: Coordinated efforts to collect large-scale data sets provide a basis for systems level understanding of complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and medical benefits, advanced computational methods for data analysis, integration and visualization are needed.Methods: We introduce a novel data integration framework, Anduril, for translating fragmented large-scale data into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of data based on different parameters, and provides direct links to more detailed data on genes, transcripts or genomic regions. Anduril is open-source; all methods and documentation are freely available.Results: We have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly inhibited cell proliferation. All analysis results are available as a comprehensive website.Conclusions: Our results demonstrate that integrated analysis and visualization of multidimensional and heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results provide several glioblastoma multiforme candidate genes for further studies. Anduril is available at http://csbi.ltdk.helsinki.fi/anduril/ The glioblastoma multiforme analysis results are available at http://csbi.ltdk.helsinki.fi/anduril/tcga-gbm

    Follow-up of patients with curatively resected colorectal cancer: a practice guideline

    Get PDF
    BACKGROUND: A systematic review was conducted to evaluate the literature regarding the impact of follow-up on colorectal cancer patient survival and, in a second phase, recommendations were developed. METHODS: The MEDLINE, CANCERLIT, and Cochrane Library databases, and abstracts published in the 1997 to 2002 proceedings of the annual meeting of the American Society of Clinical Oncology were systematically searched for evidence. Study selection was limited to randomized trials and meta-analyses that examined different programs of follow-up after curative resection of colorectal cancer where five-year overall survival was reported. External review by Ontario practitioners was obtained through a mailed survey. Final approval of the practice guideline report was obtained from the Practice Guidelines Coordinating Committee. RESULTS: Six randomized trials and two published meta-analyses of follow-up were obtained. Of six randomized trials comparing one follow-up program to a more intense program, only two individual trials detected a statistically significant survival benefit favouring the more intense follow-up program. Pooling of all six randomized trials demonstrated a significant improvement in survival favouring more intense follow-up (Relative Risk Ratio 0.80 (95%CI, 0.70 to 0.91; p = 0.0008). Although the rate of recurrence was similar in both of the follow-up groups compared, asymptomatic recurrences and re-operations for cure of recurrences were more common in patients with more intensive follow-up. Trials including CEA monitoring and liver imaging also had significant results, whereas trials not including these tests did not. CONCLUSION: Follow-up programs for patients with curatively resected colorectal cancer do improve survival. These follow-up programs include frequent visits and performance of blood CEA, chest x-rays, liver imaging and colonoscopy, however, it is not clear which tests or frequency of visits is optimal. There is a suggestion that improved survival is due to diagnosis of recurrence at an earlier, asymptomatic stage which allows for more curative resection of recurrence. Based on this evidence and consideration of the biology of colorectal cancer and present practices, a guideline was developed. Patients should be made aware of the risk of disease recurrence or second bowel cancer, the potential benefits of follow-up and the uncertainties requiring further clinical trials. For patients at high-risk of recurrence (stages IIb and III) clinical assessment is recommended when symptoms occur or at least every 6 months the first 3 years and yearly for at least 5 years. At the time of those visits, patients may have blood CEA, chest x-ray and liver imaging. For patients at lower risk of recurrence (stages I and Ia) or those with co-morbidities impairing future surgery, only visits yearly or when symptoms occur. All patients should have a colonoscopy before or within 6 months of initial surgery, and repeated yearly if villous or tubular adenomas >1 cm are found; otherwise repeat every 3 to 5 years. All patients having recurrences should be assessed by a multidisciplinary team in a cancer centre
    • 

    corecore