87 research outputs found

    White Matter Hyperintensities and the Course of Depressive Symptoms in Elderly People with Mild Dementia

    Get PDF
    Objectives: To explore the relationship between white matter hyperintensities (WMH) and the prevalence and course of depressive symptoms in mild Alzheimer’s disease (AD) and Lewy body dementia. Design: This is a prospective cohort study conducted in secondary care outpatient clinics in western Norway. Subjects: The study population consisted of 77 elderly people with mild dementia diagnosed according to standardised criteria. Methods: Structured clinical interviews and physical, neurological, psychiatric, and neuropsychological examinations were performed and routine blood tests were taken. Depression was assessed using the depression subitem of the Neuropsychiatric Inventory and the Montgomery-Åsberg Depression Rating Scale (MADRS). A standardised protocol for magnetic resonance imaging scan was used, and the volumes of WMH were quantified using an automated method, followed by manual editing. Results: The volumes of total and frontal deep WMH were significantly and positively correlated with baseline severity of depressive symptoms, and depressed patients had significantly higher volumes of total and frontal deep WMH than non-depressed patients. Higher volumes of WMH were also associated with having a high MADRS score and incident and persistent depression at follow-up. After adjustment for potential confounders, frontal deep WMH, in addition to prior depression and non-AD dementia, were still significantly associated with baseline depressive symptoms (p = 0.015, OR 3.703, 95% CI 1.294–10.593). Similar results emerged for total WMH. Conclusion: In elderly people with mild dementia, volumes of WMH, in particular frontal deep WMH, were positively correlated with baseline severity of depressive symptoms, and seemed to be associated with persistent and incident depression at follow-up. Further studies of the mechanisms that determine the course of depression in mild dementia are needed

    Analytical Estimate of the Critical Velocity for Vortex Pair Creation in Trapped Bose Condensates

    Full text link
    We use a modified Thomas-Fermi approximation to estimate analytically the critical velocity for the formation of vortices in harmonically trapped BEC. We compare this analytical estimate to numerical calculations and to recent experiments on trapped alkali condensates.Comment: 12 page

    Decay of quantised vorticity by sound emission

    Full text link
    It is thought that in a quantum fluid sound generation is the ultimate sink of turbulent kinetic energy in the absence of any other dissipation mechanism near absolute zero. We show that a suitably trapped Bose-Einstein condensate provides a model system to study the sound emitted by accelerating vortices in a controlled way.Comment: 6 pages, 3 figure

    Observation of Superfluid Flow in a Bose-Einstein Condensed Gas

    Full text link
    We have studied the hydrodynamic flow in a Bose-Einstein condensate stirred by a macroscopic object, a blue detuned laser beam, using nondestructive {\em in situ} phase contrast imaging. A critical velocity for the onset of a pressure gradient has been observed, and shown to be density dependent. The technique has been compared to a calorimetric method used previously to measure the heating induced by the motion of the laser beam.Comment: 4 pages, 5 figure

    Kolmogorov Spectrum of Quantum Turbulence

    Full text link
    There is a growing interest in the relation between classical turbulence and quantum turbulence. Classical turbulence arises from complicated dynamics of eddies in a classical fluid. In contrast, quantum turbulence consists of a tangle of stable topological defects called quantized vortices, and thus quantum turbulence provides a simpler prototype of turbulence than classical turbulence. In this paper, we investigate the dynamics and statistics of quantized vortices in quantum turbulence by numerically solving a modified Gross-Pitaevskii equation. First, to make decaying turbulence, we introduce a dissipation term that works only at scales below the healing length. Second, to obtain steady turbulence through the balance between injection and decay, we add energy injection at large scales. The energy spectrum is quantitatively consistent with the Kolmogorov law in both decaying and steady turbulence. Consequently, this is the first study that confirms the inertial range of quantum turbulence.Comment: 14pages, 24 figures and 1 table. Appeared in Journal of the Physical Society of Japan, Vol.74, No.12, p.3248-325

    Depression in Mild Cognitive Impairment is associated with Progression to Alzheimer's Disease:A Longitudinal Study

    Get PDF
    Background: Behavioral and psychological signs and symptoms of dementia (BPSD) belong to the core symptoms of dementia and are also common in mild cognitive impairment (MCI).Objective: This study would like to contribute to the understanding of the prognostic role of BPSD in MCI for the progression to dementia due to Alzheimer's disease (AD).Methods: Data were generated through an ongoing prospective longitudinal study on BPSD. Assessment was performed by means of the Middelheim Frontality Score, Behave-AD, Cohen-Mansfield Agitation Inventory, Cornell Scale for Depression in Dementia (CSDD), and Geriatric Depression Scale 30-questions (GDS-30). Cox proportional hazard models were used to test the hypothesis that certain BPSD in MCI are predictors of developing AD.Results: The study population consisted of 183 MCI patients at baseline. At follow-up, 74 patients were stable and 109 patients progressed to AD. The presence of significant depressive symptoms in MCI as measured by the CSDD (HR: 2.06; 95% CI: 1.23-3.44; p = 0.011) and the GDS-30 (HR: 1.77; 95% CI: 1.10-2.85; p = 0.025) were associated with progression to AD. The severity of depressive symptoms as measured by the GDS-30 was a predictor for progression too (HR: 1.06; 95% CI: 1.01-1.11; p = 0.020). Furthermore, the severity of agitated behavior, especially verbal agitation and the presence of purposeless activity, was also associated with progression, whereas diurnal rhythm disturbances were associated with no progression to AD.Conclusion: Depressive symptoms in MCI appear to be predictors for progression to AD.</p

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier–finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere result

    A spherical shell numerical dynamo benchmark with pseudo-vacuum magnetic boundary conditions

    Get PDF
    It is frequently considered that many planetary magnetic fields originate as a result of convection within planetary cores. Buoyancy forces responsible for driving the convection generate a fluid flow that is able to induce magnetic fields; numerous sophisticated computer codes are able to simulate the dynamic behaviour of such systems. This paper reports the results of a community activity aimed at comparing numerical results of several different types of computer codes that are capable of solving the equations of momentum transfer, magnetic field generation and heat transfer in the setting of a spherical shell, namely a sphere containing an inner core. The electrically conducting fluid is incompressible and rapidly rotating and the forcing of the flow is thermal convection under the Boussinesq approximation. We follow the original specifications and results reported in Harder & Hansen to construct a specific benchmark in which the boundaries of the fluid are taken to be impenetrable, non-slip and isothermal, with the added boundary condition for the magnetic field B that the field must be entirely radial there; this type of boundary condition for B is frequently referred to as ‘pseudo-vacuum'. This latter condition should be compared with the more frequently used insulating boundary condition. This benchmark is so-defined in order that computer codes based on local methods, such as finite element, finite volume or finite differences, can handle the boundary condition with ease. The defined benchmark, governed by specific choices of the Roberts, magnetic Rossby, Rayleigh and Ekman numbers, possesses a simple solution that is steady in an azimuthally drifting frame of reference, thus allowing easy comparison among results. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement among code
    corecore