465 research outputs found

    Substitution effects on the temperature vs. magnetic-field phase diagrams of the quasi-1D effective Ising spin-1/2 chain system BaCo2_2V2_2O8_8

    Full text link
    BaCo2_2V2_2O8_8 is a one-dimensional antiferromagnetic spin-1/2 chain system with pronounced Ising anisotropy of the magnetic exchange. Due to finite interchain interactions long-range antiferromagnetic order develops below TN5.5T_{\rm N} \simeq 5.5 K, which is accompanied by a structural distortion in order to lift magnetic frustration effects. The corresponding temperature vs.vs. magnetic-field phase diagram is highly anisotropic with respect to the magnetic-field direction and various details are still under vivid discussion. Here, we report the influence of several substitutions on the magnetic properties and the phase diagrams of BaCo2_2V2_2O8_8. We investigate the substitution series Ba1-x_{\text{1-x}}Srx_{\text{x}}Co2_{\text{2}}V2_{\text{2}}O8_{\text{8}} over the full range 0x10\le x \le 1 as well as the influence of a partial substitution of the magnetic Co2+^{2+} by small amounts of other magnetic transition metals or by non-magnetic magnesium. In all cases, the phase diagrams were obtained on single crystals from magnetization data and/or high-resolution studies of the thermal expansion and magnetostriction.Comment: 10 pages, 10 figure

    Competition between intermediate plaquette phases in SrCu2_2(BO3_3)2_2 under pressure

    Full text link
    Building on the growing evidence based on NMR, magnetization, neutron scattering, ESR, and specific heat that, under pressure, SrCu2_2(BO3_3)2_2 has an intermediate phase between the dimer and the N\'eel phase, we study the competition between two candidate phases in the context of a minimal model that includes two types of intra- and inter-dimer interactions without enlarging the unit cell. We show that the empty plaquette phase of the Shastry-Sutherland model is quickly replaced by a quasi-1D full plaquette phase when intra- and/or inter-dimer couplings take different values, and that this full plaquette phase is in much better agreement with available experimental data than the empty plaquette one.Comment: 19 page

    Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field

    Get PDF
    We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo2_2V2_2O8_8 as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N\'{e}el temperature of TN5T_N\sim5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v(B)v(B) and a clear minimum of temperature T(B)T(B) at Bc,3D=21.4B^{c,3D}_\perp=21.4 T, indicating the suppression of the antiferromagnetic order. At higher fields, the T(B)T(B) curve shows a broad minimum at Bc=40B^c_\perp = 40 T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr\"{u}neisen parameter ΓB(BBc)1\Gamma_B \propto (B-B^{c}_\perp)^{-1}. By contrast, around the critical field, the Gr\"{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea

    Thermodynamic properties of the Shastry-Sutherland model from quantum Monte Carlo simulations

    Get PDF
    We investigate the minus-sign problem that afflicts quantum Monte Carlo (QMC) simulations of frustrated quantum spin systems, focusing on spin S=1/2, two spatial dimensions, and the extended Shastry-Sutherland model. We show that formulating the Hamiltonian in the diagonal dimer basis leads to a sign problem that becomes negligible at low temperatures for small and intermediate values of the ratio of the inter- and intradimer couplings. This is a consequence of the fact that the product state of dimer singlets is the exact ground state both of the extended Shastry-Sutherland model and of a corresponding "sign-problem-free" model, obtained by changing the signs of all positive off-diagonal matrix elements in the dimer basis. By exploiting this insight, we map the sign problem throughout the extended parameter space from the Shastry-Sutherland to the fully frustrated bilayer model and compare it with the phase diagram computed by tensor-network methods. We use QMC to compute with high accuracy the temperature dependence of the magnetic specific heat and susceptibility of the Shastry-Sutherland model for large systems up to a coupling ratio of 0.526(1) and down to zero temperature. For larger coupling ratios, our QMC results assist us in benchmarking the evolution of the thermodynamic properties by systematic comparison with exact diagonalization calculations and interpolated high-temperature series expansions.Comment: 13 pages including 10 figures; published version with minor changes and correction

    Structure activity related, mechanistic, and modeling studies of gallotannins containing a glucitol-core and α-glucosidase

    Get PDF
    Gallotannins containing a glucitol core, which are only produced by members of the maple (Acer) genus, are more potent α-glucosidase inhibitors than the clinical drug, acarbose. While this activity is influenced by the number of substituents on the glucitol core (e.g. more galloyl groups leads to increased activity), the mechanisms of inhibitory action are not known. Herein, we investigated ligand–enzyme interactions and binding mechanisms of a series of ‘glucitol-core containing gallotannins (GCGs)’ against the α-glucosidase enzyme. The GCGs included ginnalins A, B and C (containing two, one, and one galloyl/s, respectively), maplexin F (containing 3 galloyls) and maplexin J (containing 4 galloyls). All of the GCGs were noncompetitive inhibitors of α-glucosidase and their interactions with the enzyme were further explored using biophysical and spectroscopic measurements. Thermodynamic parameters (by isothermal titration calorimetry) revealed a 1 : 1 binding ratio between GCGs and α-glucosidase. The binding regions between the GCGs and α-glucosidase, probed by a fluorescent tag, 1,1′-bis(4-anilino-5-naphthalenesulfonic acid), revealed that the GCGs decreased the hydrophobic surface of the enzyme. In addition, circular dichroism analyses showed that the GCGs bind to α-glucosidase and lead to loss of the secondary α-helix structure of the protein. Also, molecular modeling was used to predict the binding site between the GCGs and the α-glucosidase enzyme. This is the first study to evaluate the mechanisms of inhibitory activities of gallotannins containing a glucitol core on α-glucosidase

    Water Dynamics Around Proteins: T- and R-States of Hemoglobin and Melittin

    Full text link
    The water dynamics, as characterized by the local hydrophobicity (LH), is investigated for tetrameric hemoglobin and dimeric melittin. For the T0 to R0 transition in Hb it is found that LH provides additional molecular-level insight into the Perutz mechanism, i.e., the breaking and formation of salt bridges at the alpha1 / beta2 and alpha2 / beta1 interface is accompanied by changes in LH. For Hb in cubic water boxes with 90 Aengstroem and 120 Aengstroem edge length it is observed that following a decrease in LH as a consequence of reduced water density or change of water orientation at the protein/water interface the alpha / beta interfaces are destabilized; this is a hallmark of the Perutz stereochemical model for the T to R transition in Hb. The present work thus provides a dynamical view of the classical structural model relevant to the molecular foundations of Hb function. For dimeric melittin, earlier results by Cheng and Rossky (Nature, 1998, 392, 696-699) are confirmed and interpreted on the basis of LH from simulations in which the protein structure is frozen. For the flexible melittin dimer the changes in the local hydration can be as much as 30 % than for the rigid dimer, reflecting the fact that protein and water dynamics are coupled

    Pretty Picky for a Generalist: Impacts of Toxicity and Nutritional Quality on Mantid Prey Processing

    Get PDF
    Prey have evolved a number of defenses against predation, and predators have developed means of countering these protective measures. Although caterpillars of the monarch butterfly, Danaus plexippus L., are defended by cardenolides sequestered from their host plants, the Chinese mantid Tenodera sinensis Saussure guts the caterpillar before consuming the rest of the body. We hypothesized that this gutting behavior might be driven by the heterogeneous quality of prey tissue with respect to toxicity and/or nutrients. We conducted behavioral trials in which mantids were offered cardenolide-containing and cardenolide-free D. plexippus caterpillars and butterflies. In addition, we fed mantids starved and unstarved D. plexippus caterpillars from each cardenolide treatment and nontoxic Ostrinia nubilalis Hübner caterpillars. These trials were coupled with elemental analysis of the gut and body tissues of both D. plexippus caterpillars and corn borers. Cardenolides did not affect mantid behavior: mantids gutted both cardenolide-containing and cardenolide-free caterpillars. In contrast, mantids consumed both O. nubilalis and starved D. plexippus caterpillars entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut contents, while O. nubilalis have similar ratios; gutting may reflect the mantid’s ability to regulate nutrient uptake. Our results suggest that post-capture prey processing by mantids is likely driven by a sophisticated assessment of resource quality
    corecore