292 research outputs found

    Radiocarbon dating of late Quaternary sediments using fossil gastropod shells

    Get PDF
    Terrestrial gastropods are one of the most successful groups of organisms on Earth. Their distribution includes all continents except Antarctica, and they occupy exceptionally diverse habitats, from marshes and wet meadows to alpine forests and Arctic tundra. Their shells are also commonly preserved in Quaternary deposits and potentially could be used for 14C dating. However, terrestrial gastropods are known to ingest limestone and incorporate the old carbon in their shells, resulting in apparent ages that are often too old. Recent studies have shown that many small (\u3c1 cm diameter) terrestrial gastropods avoid this “limestone problem” even when living in areas in which carbonate rocks are readily available. However, the shells must also behave as closed systems with respect to carbon if their ages are to be considered reliable. Our latest work has been aimed at testing if small gastropod shells do, in fact, remain closed systems in late Quaternary deposits over a wide array of climate conditions across North America. Our results demonstrate that ages derived from Succineidae shells are identical to wood and charcoal ages in loess in Alaska, glacial deposits in the upper Midwest, loess in the Great Plains, and paleowetlands in the desert southwest. Moreover, Succineidae shell ages routinely fall within permitted limits set by stratigraphic boundaries, require less interpretation than humic acid ages that are commonly used in loess studies, can provide additional stratigraphic coverage to previous dating efforts, and maintain stratigraphic order more often than luminescence ages from the same stratigraphic intervals. Thus, we conclude that fossil Succineidae shells, and shells of a few other small gastropods, can be used for 14C dating regardless of the local lithology, past climate, or environmental conditions

    On the importance of stratigraphic control for vertebrate fossil sites in Channel Islands National Park, California, USA: Examples from new Mammuthus finds on San Miguel Island

    Get PDF
    Quaternary vertebrate fossils, most notably mammoth remains, are relatively common on the northern Channel Islands of California. Well-preserved cranial, dental, and appendicular elements of Mammuthus exilis (pygmy mammoth) and Mammuthus columbi (Columbian mammoth) have been recovered from hundreds of localities on the islands during the past half-century or more. Despite this paleontological wealth, the geologic context of the fossils is described in the published literature only briefly or not at all, which has hampered the interpretation of associated 14C ages and reconstruction of past environmental conditions. We recently discovered a partial tusk, several large bones, and a tooth enamel plate (all likely mammoth) at two sites on the northwest flank of San Miguel Island, California. At both localities, we documented the stratigraphic context of the fossils, described the host sediments in detail, and collected charcoal and terrestrial gastropod shells for radiocarbon dating. The resulting 14C ages indicate that the mammoths were present on San Miguel Island between ~20 and 17 ka as well as between ~14 and 13 ka (thousands of calibrated 14C years before present), similar to other mammoth sites on San Miguel, Santa Cruz, and Santa Rosa Islands. In addition to documenting the geologic context and ages of the fossils, we present a series of protocols for documenting and reporting geologic and stratigraphic information at fossil sites on the California Channel Islands in general, and in Channel Islands National Park in particular, so that pertinent information is collected prior to excavation of vertebrate materials, thus maximizing their scientific value

    Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska

    Get PDF
    Although loess–paleosol sequences are among the most important records of Quaternary climate change and past dust deposition cycles, few modern examples of such sedimentation systems have been studied. Stratigraphic studies and 22 new accelerator mass spectrometry radiocarbon ages from the Matanuska Valley in southern Alaska show that loess deposition there began sometime after ~6500 14C yr B.P. and has continued to the present. The silts are produced through grinding by the Matanuska and Knik glaciers, deposited as outwash, entrained by strong winds, and redeposited as loess. Over a downwind distance of ~40 km, loess thickness, sand content, and sand-pluscoarse- silt content decrease, whereas fine-silt content increases. Loess deposition was episodic, as shown by the presence of paleosols, at distances \u3e10 km from the outwash plain loess source. Stratigraphic complexity is at a maximum (i.e., the greatest number of loesses and paleosols) at intermediate (10–25 km) distances from the loess source. Surface soils increase in degree of development with distance downwind from the source, where sedimentation rates are lower. Proximal soils are Entisols or Inceptisols, whereas distal soils are Spodosols. Ratios of mobile CaO, K2O, and Fe2O3 to immobile TiO2 show decreases in surface horizons with distance from the source. Thus, as in China, where loess deposition also takes place today, eolian sedimentation and soil formation are competing processes. Study of loess and paleosols in southern Alaska shows that particle size can vary over short distances, loess deposition can be episodic over limited time intervals, and soils developed in stabilized loess can show considerable variability under the same vegetation

    Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    Get PDF
    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu*, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America

    Chemical Weathering of Loess and Its Contribution to Global Alkalinity Fluxes to the Coastal Zone During the Last Glacial Maximum, Mid‐Holocene, and Present

    Get PDF
    Loess sediments are windblown silt deposits with, in general, a carbonate grain content of up to 30%. While regionally, loess was reported to increase weathering fluxes substantially, the influence on global weathering fluxes remains unknown. Especially on glacial‐interglacial time scales, loess weathering fluxes might have contributed to land‐ocean alkalinity flux variability since the loess areal extent during glacial epochs was larger. To quantify loess weathering fluxes, global maps representing the loess distribution were compiled. Water chemistry of rivers draining recent loess deposits suggests that loess contributes over‐proportionally to alkalinity concentrations if compared to the mean of alkalinity concentrations of global rivers (~4,110 µeq L−1 for rivers draining loess deposits and ~1,850 µeq L−1 for the total of global rivers), showing comparable alkalinity concentration patterns in rivers as found for carbonate sedimentary rocks. Loess deposits, covering ~4% of the ice‐ and water‐free land area, increase calculated global alkalinity fluxes to the coastal zone by 16%. The new calculations lead to estimating a 4% higher global alkalinity flux during the Last Glacial Maximum (LGM) compared to present fluxes. The effect of loess on that comparison is high. Alkalinity fluxes from silicate‐dominated lithological classes were ~28% and ~30% lower during the LGM than recent (with loess and without loess, respectively), and elevated alkalinity fluxes from loess deposits compensated for this. Enhanced loess weathering dampens due to a legacy effect changes in silicate‐dominated lithologies over the glacial‐interglacial time scale

    Tectonic influences on the preservation of marine terraces: Old and new evidence from Santa Catalina Island, California

    Get PDF
    The California Channel Islands contain some of the best geologic records of past climate and sea-level changes, recorded in uplifted, fossil-bearing marine terrace deposits. Among the eight California Channel Islands and the nearby Palos Verdes Hills, only Santa Catalina Island does not exhibit prominent emergent marine terraces, though the same terrace-forming processes that acted on the other Channel Islands must also have occurred on Santa Catalina. We re-evaluated previous researchers\u27 field evidence and examined new topographic, bathymetric, and stream-profile data in order to find possible explanations for the lack of obvious marine terrace landforms or deposits on the island today. The most likely explanation is associated with the island\u27s unresolved tectonic history, with evidence for both recent uplift and subsidence being offered by different researchers. Bathymetric and seismic reflection data indicate the presence of submerged terrace-like landforms from a few meters below present sea level to depths far exceeding that of the lowest glacial lowstand, suggesting that the Catalina Island block may have subsided, submerging marine terraces that would have formed in the late Quaternary. Similar submerged marine terrace landforms exist offshore of all of the other California Channel Islands, including some at anomalously great depths, but late Quaternary uplift is well documented on those islands. Therefore, such submarine features must be more thoroughly investigated and adequately explained before they can be accepted as definitive evidence of subsidence. Nevertheless, the striking similarity of the terrace-like features around Santa Catalina Island to those surrounding the other, uplifting, Channel Islands prompted us to investigate other lines of evidence of tectonic activity, such as stream profile data. Recent uplift is suggested by disequilibrium stream profiles on the western side of the island, including nickpoints and profile convexities. Rapid uplift is also indicated by the island\u27s highly dissected, steep topography and abundant landslides. A likely cause of uplift is a restraining bend in the offshore Catalina strike-slip fault. Our analysis suggests that Santa Catalina Island has recently experienced, and may still be experiencing, relatively rapid uplift, causing intense landscape rejuvenation that removed nearly all traces of marine terraces by erosion. A similar research approach, incorporating submarine as well as subaerial geomorphic data, could be applied to many tectonically active coastlines in which a marine terrace record appears to be missing

    Testing glacial isostatic adjustment models of last-interglacial sea level history in the Bahamas and Bermuda

    Get PDF
    Part of the spatial variation in the apparent sea-level record of the last interglacial (LIG) period is due to the diverse response of coastlines to glacial isostatic adjustment (GIA) processes, particularly where coastlines were close to the Laurentide Ice Sheet during the past two glacial periods. We tested modeled LIG paleo-sea levels on New Providence Island (NPI), Bahamas and Bermuda by investigating emergent coral patch reefs and oolitic/peloidal beach deposits. Corals with closed-system histories collected from patch reefs on NPI have ages of 128-118 ka and ooids/peloids from beach ridges have closed-system ages of 128-116 ka. Elevations of patch reefs indicate a LIG paleo-sea level of at least ~7 m to ~9 m above present. Beach ridge sediments indicate paleo-sea levels of ~5 m to ~14 m (assuming subsidence, ~7 m to ~16 m) above present during the LIG. Some, though not all of these measurements are in good agreement with GIA models of paleo-sea level that have been simulated for the Bahamas. On Bermuda, corals with closed-system histories collected from marine deposits have ages of 126-114 ka. Although coral-bearing marine deposits on Bermuda lack the precise indication of paleo-sea level provided by patch reefs and oolitic beach ridges, these sediments nevertheless provide at least a first-order estimate of paleo-sea level. Paleo-sea level records on Bermuda are consistently lower (~2 m to ~7 m) than what GIA models simulate for the LIG. The reason for the reasonable agreement with models for the Bahamas and poor agreement for Bermuda is not understood, but needs further investigation in light of the probability of a higher sea level in the near future

    Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska

    Get PDF
    Contemporary glaciogenic dust has not received much attention, because most research has been on glaciogenic dust of the last glacial period or non-glaciogenic dust of the present interglacial period. Nevertheless, dust from modern glaciogenic sources may be important for Fe inputs to primary producers in the ocean. Adjacent to the subarctic Pacific Ocean, we studied a loess section near Chitina, Alaska along the Copper River in Wrangell-St. Elias National Park, where dust has been accumulating over the past ~10,000 years. Mass accumulation rates for the fine-grained (\u3c20 \u3eµm) fraction of this loess section are among the highest reported for the Holocene of high-latitude regions of the Northern Hemisphere. Based on mineralogy and geochemistry, loess at Chitina is derived from glacial sources in the Wrangell Mountains, the Chugach Mountains, and probably the Alaska Range. Concentrations of Fe in the silt-plus-clay fraction of the loess at Chitina are much higher than in all other loess bodies in North America and higher than most loess bodies on other continents. The very fine-grained (\u3c2 \u3eµm) portion of this sediment, capable of long-range transport, is dominated by Fe-rich chlorite, which can yield Fe readily to primary producers in the ocean. Examination of satellite imagery shows that dust from the Copper River is transported by wind on a regular basis to the North Pacific Ocean. This Alaskan example shows that high-latitude glaciogenic dust needs to be considered as a significant Fe source to primary producers in the open ocean

    Структурные изменения в системе гемостаза у больных меланомой кожи на ранней стадии ее развития

    Get PDF
    Мета дослідження – оцінка показників системи гемостазу у 27 хворих на меланому шкіри. Виявлено подовження активованого часткового тромбопластинового часу, подовження часткового тромбопластинового часу, подовження часу рекальцифікації, зниження рівня антитромбіну III, підвищення рівня розчинних фібрін-мономерних комплексів. Таким чином, мають місце серйозні структурні зміни системного гемостазу - гіпокоагуляція і гіперфібриноліз. Діагностика та корекція цих змін допоможе поліпшити клінічний перебіг і прогноз захворювання.A research aim is an estimation of indexes of the system of hemostasis at 27 patients by the melanoma of skin. Lengthening of the activated partial tromboplastin time, lengthening of partial tromboplastin time, lengthening of time of recalcification, decline of level of antithrombin of III, increase of level of soluble fibrinmonomers complexes is educed. Thus, the serious structural changes in the system of hemostasis - incoagulability and hyperfibrinolysis take place. Diagnostics and correction of these changes will help to improve a clinical flow and prognosis of disease

    Remodeling of Abdominal Aortic Angulation and Curvature After Endovascular Aneurysm Repair in Patients With vs Without Late Type Ia Endoleak or Endograft Migration

    Get PDF
    Purpose: To investigate aortic remodeling of the supra- and infrarenal aorta from preoperative to 1 month and midterm follow-up after endovascular aneurysm repair (EVAR) by analyzing changes in angulation and curvature in patients with vs without late type Ia endoleak or device migration. Materials and Methods: From a multicenter database, 35 patients (mean age 76 +/- 5 years; 31 men) were identified with late (>1 year) type Ia endoleak or endograft migration (>= 10 mm) and defined as the complication group. The control group consisted of 53 patients (mean age 75 +/- 7 years; 48 men) with >1-year computed tomography angiography (CTA) follow-up and no evidence of endoleaks. Suprarenal and infrarenal angles were measured on centerline reconstructions of the preoperative, 1-month, and midterm CTA scans. The value and location relative to baseline of maximum suprarenal and infrarenal curvature were determined semiautomatically using dedicated software. Changes were determined at 1 month compared with the preoperative CTA and at midterm compared with 1 month. Results: Preoperative suprarenal angulation was significantly greater in the complication group compared to the controls (34 degrees +/- 18 degrees vs 24 degrees +/- 17 degrees, p=0.008). It decreased significantly at 1 month in the complication group (29 degrees +/- 16 degrees, p=0.011) and at midterm follow-up in the controls (20 degrees +/- 19 degrees, p Conclusion: At midterm follow-up, significant differences in supra- and infrarenal angulation and curvature were observed between patients with vs without type Ia endoleak or migration. The location of the maximum curvature shifted distally in patients with complications. The aortic morphology is more stable during midterm follow-up in the patients without endoleaks
    corecore