6 research outputs found

    In Vivo Binding and Retention of CD4-Specific DARPin 57.2 in Macaques

    Get PDF
    The recently described Designed Ankyrin Repeat Protein (DARPin) technology can produce highly selective ligands to a variety of biological targets at a low production cost.To investigate the in vivo use of DARPins for future application to novel anti-HIV strategies, we identified potent CD4-specific DARPins that recognize rhesus CD4 and followed the fate of intravenously injected CD4-specific DARPin 57.2 in rhesus macaques. The human CD4-specific DARPin 57.2 bound macaque CD4(+) cells and exhibited potent inhibitory activity against SIV infection in vitro. DARPin 57.2 or the control E3_5 DARPin was injected into rhesus macaques and the fate of cell-free and cell-bound CD4-specific DARPin was evaluated. DARPin-bound CD4(+) cells were detected in the peripheral blood as early as 30 minutes after the injection, decreasing within 6 hours and being almost undetectable within 24 hours. The amount of DARPin bound was dependent on the amount of DARPin injected. CD4-specific DARPin was also detected on CD4(+) cells in the lymph nodes within 30 minutes, which persisted with similar kinetics to blood. More extensive analysis using blood revealed that DARPin 57.2 bound to all CD4(+) cell types (T cells, monocytes, dendritic cells) in vivo and in vitro with the amount of binding directly proportional to the amount of CD4 on the cell surface. Cell-free DARPins were also detected in the plasma, but were rapidly cleared from circulation.We demonstrated that the CD4-specific DARPin can rapidly and selectively bind its target cells in vivo, warranting further studies on possible clinical use of the DARPin technology

    Selection and characterization of DARPins specific for the neurotensin receptor 1

    No full text
    We describe here the selection and characterization of designed ankyrin repeat proteins (DARPins) that bind specifically to the rat neurotensin receptor 1 (NTR1), a G-protein coupled receptor (GPCR). The selection procedure using ribosome display and the initial clone analysis required <10 µg of detergent-solubilized, purified NTR1. Complex formation with solubilized GPCR was demonstrated by ELISA and size-exclusion chromatography; additionally, the GPCR could be detected in native membranes of mammalian cells using fluorescence microscopy. The main binding epitope in the GPCR lies within the 33 amino acids following the seventh transmembrane segment, which comprise the putative helix 8, and additional binding interactions are possibly contributed by the cytoplasmic loop 3, thus constituting a discontinuous epitope. Since the selected binders recognize the GPCR both in detergent-solubilized and in membrane-embedded forms, they will be potentially useful both in co-crystallization trials and for signal transduction experiments

    Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase

    No full text
    By combining targeted mutagenesis, computational refinement, and directed evolution, a modestly active, computationally designed Diels-Alderase was converted into the most proficient biocatalyst for [4+2] cycloadditions known. The high stereoselectivity and minimal product inhibition of the evolved enzyme enabled preparative scale synthesis of a single product diastereomer. X-ray crystallography of the enzyme–product complex shows that the molecular changes introduced over the course of optimization, including addition of a lid structure, gradually reshaped the pocket for more effective substrate preorganization and transition state stabilization. The good overall agreement between the experimental structure and the original design model with respect to the orientations of both the bound product and the catalytic side chains contrasts with other computationally designed enzymes. Because design accuracy appears to correlate with scaffold rigidity, improved control over backbone conformation will likely be the key to future efforts to design more efficient enzymes for diverse chemical reactions
    corecore