144 research outputs found

    Late Winter Biogeochemical Conditions Under Sea Ice in the Canadian High Arctic

    Get PDF
    With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2) uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W) in the Canadian High Arctic. Results show relatively low surface water (1–10 m) nitrate (<1.3 µM) and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1), total alkalinity (mean±SD=2134±11.09 µmol kg−1) and under-ice pCO2sw (mean±SD=286±17 µatm). These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season

    Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment

    Get PDF
    δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization

    The changing carbon cycle of the coastal ocean

    Get PDF
    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget

    The effect of pH, aluminum, and chelator manipulations on the growth of acidic and circumneutral species of Asterionella

    Full text link
    The growth rates of two diatoms, acidophilic Asterionella ralfsii and circumneutral A. formosa , were differentially affected by varying pH, Al, and EDTA in chemically defined media. Free Al ion concentration increased as pH and EDTA concentration decreased. Free trace metal ion concentration decreased as EDTA levels increased but increased by orders of magnitude upon addition of Al. pH had an overriding species specific effect on growth rate; at low pH A. ralfsii had higher growth rates than A. formosa and vice versa at high pH. For both species higher EDTA levels depressed growth rates. Moderate additions of Al generally resulted in growth stimulation. The growth rate stimulations, especially at 200 and 400 μg L −1 Al additions, correlate to increases in free trace metal ion concentrations. The EDTA-AI interaction effects on growth rate were both pH and concentration dependent: at pH 7 both species were stimulated by addition of Al at all EDTA levels (except A. ralfsii at 5.0 mM EDTA and A. formosa at 0.5 mNM EDTA); at pH 6 Al addition either stimulated or had no effect on the growth rates of both species (except at low EDTA and high Al levels); at pH 5 A. formosa did not grow and additions of 200 μg L −1 Al stimulated growth of A. ralfsii . It is likely that the effect of pH, Al, and EDTA on speciation of essential or toxic trace metals affects growth rates of these diatoms in a species specific manner.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43905/1/11270_2004_Article_BF00282626.pd
    • …
    corecore