2,194 research outputs found
Large magnetic circular dichroism in resonant inelastic x-ray scattering at the Mn L-edge of Mn-Zn ferrite
We report resonant inelastic x-ray scattering (RIXS) excited by circularly
polarized x-rays on Mn-Zn ferrite at the Mn L2,3-resonances. We demonstrate
that crystal field excitations, as expected for localized systems, dominate the
RIXS spectra and thus their dichroic asymmetry cannot be interpreted in terms
of spin-resolved partial density of states, which has been the standard
approach for RIXS dichroism. We observe large dichroic RIXS at the L2-resonance
which we attribute to the absence of metallic core hole screening in the
insulating Mn-ferrite. On the other hand, reduced L3-RIXS dichroism is
interpreted as an effect of longer scattering time that enables spin-lattice
core hole relaxation via magnons and phonons occurring on a femtosecond time
scale.Comment: 7 pages, 2 figures,
http://link.aps.org/doi/10.1103/PhysRevB.74.17240
Electronic structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first principle theory
The electronic structure in the new transition metal carbide Ti4SiC3 has been
investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to
the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C
K and Si L x-ray emission spectra are discussed with ab initio calculations
based on density-functional theory including core-to-valence dipole matrix
elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds
provide increased understanding of the physical properties of these
nanolaminates. A strongly modified spectral shape is detected for the buried Si
monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of
relaxation of the crystal structure and the charge-transfer from Ti (and Si) to
C, the strength of the Ti-C covalent bond is increased. The differences between
the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in
relation to the number of Si layers per Ti layer in the two systems and the
corresponding change of materials properties.Comment: 12 pages, 7 figures, 1 tabl
Electronic structure and chemical bonding in Ti2AlC investigated by soft x-ray emission spectroscopy
The electronic structure of the nanolaminated transition metal carbide Ti2AlC
has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The
measured Ti L, C K and Al L emission spectra are compared with calculated
spectra using ab initio density-functional theory including dipole matrix
elements. The detailed investigation of the electronic structure and chemical
bonding provides increased understanding of the physical properties of this
type of nanolaminates. Three different types of bond regions are identified;
the relatively weak Ti 3d - Al 3p hybridization 1 eV below the Fermi level, and
the Ti 3d - C 2p and Ti 3d - C 2s hybridizations which are stronger and deeper
in energy are observed around 2.5 eV and 10 eV below the Fermi level,
respectively. A strongly modified spectral shape of the 3s final states in
comparison to pure Al is detected for the buried Al monolayers indirectly
reflecting the Ti 3d - Al 3p hybridization. The differences between the
electronic and crystal structures of Ti2AlC, Ti3AlC2 and TiC are discussed in
relation to the number of Al layers per Ti layer in the two former systems and
the corresponding change of the unusual materials properties.Comment: 14 pages, 7 figures; PACS:78.70.En, 71.15.Mb, 71.20.-
Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes.
BackgroundMahi-mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi-mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi-mahi from the zygote stage to adult has been described.ResultsA comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development.ConclusionRemarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm-water, active Teleost fishes
Electronic structure investigation of the cubic inverse perovskite Sc3AlN
The electronic structure and chemical bonding of the recently discovered
inverse perovskite Sc3AlN, in comparison to ScN and Sc metal have been
investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured
Sc L, N K, Al L1, and Al L2,3 emission spectra are compared with calculated
spectra using first principle density-functional theory including dipole
transition matrix elements. The main Sc 3d - N 2p and Sc 3d - Al 3p chemical
bond regions are identified at -4 eV and -1.4 eV below the Fermi level,
respectively. A strongly modified spectral shape of 3s states in the Al L2,3
emission from Sc3AlN in comparison to pure Al metal is found, which reflects
the Sc 3d - Al 3p hybridization observed in the Al L1 emission. The differences
between the electronic structure of Sc3AlN, ScN, and Sc metal are discussed in
relation to the change of the conductivity and elastic properties.Comment: 11 pages, 5 picture
Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft-X-ray emission spectroscopy
The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2 and
Ti3GeC2 have been investigated by bulk-sensitive soft X-ray emission
spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L and Ge M
emission spectra are compared with ab initio density-functional theory
including core-to-valence dipole matrix elements. A qualitative agreement
between experiment and theory is obtained. A weak covalent Ti-Al bond is
manifested by a pronounced shoulder in the Ti L-emission of Ti3AlC2. As Al is
replaced with Si or Ge, the shoulder disappears. For the buried Al and
Si-layers, strongly hybridized spectral shapes are detected in Ti3AlC2 and
Ti3SiC2, respectively. As a result of relaxation of the crystal structure and
the increased charge-transfer from Ti to C, the Ti-C bonding is strengthened.
The differences between the electronic structures are discussed in relation to
the bonding in the nanolaminates and the corresponding change of materials
properties.Comment: 15 pages, 8 figure
Evaluating Children’s Advocacy Centers’ Response to Child Sexual Abuse
Children’s Advocacy Centers (CACs) play an increasingly significant role in the response to child sexual abuse and other child maltreatment in the United States. First developed in the 1980s, CACs were designed to reduce the stress on child abuse victims and families created by traditional child abuse investigation and prosecution procedures and to improve the effectiveness of the response. According to several experts (Fontana, 1984; Pence and Wilson, 1992; Whitcomb, 1992), child victims were subjected to multiple, redundant interviews about their abuse by different agencies, and were questioned by professionals who had no knowledge of children’s developmental limitations or experience working with children. Child interviews would take place in settings like police stations that would further stress already frightened children. Moreover, the response was hampered because the multiple agencies involved did not coordinate their investigations, and children’s need for services could be neglected
Resonant soft X-ray Raman scattering of NiO
Resonant soft X-ray Raman scattering measurements on NiO have been made at
photon energies across the Ni 2p absorption edges. The details of the spectral
features are identified as Raman scattering due to d-d and charge-transfer
excitations. The spectra are interpreted within the single impurity Anderson
model, including multiplets, crystal-field and charge-transfer effects. At
threshold excitation, the spectral features consists of triplet-triplet and
triplet-singlet transitions of the 3d8 configuration. For excitation energies
corresponding to the charge-transfer region in the Ni 2p X-ray absorption
spectrum of NiO, the emission spectra are instead dominated by charge-transfer
transitions to the 3d9L-1 final state. Comparisons of the final states with
other spectroscopical techniques are also made.Comment: 9 pages, 2 figures, 2 tables,
http://iopscience.iop.org/0953-8984/14/13/32
Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma
Pancreatic cancer is characterized by nearly universal activating mutations in KRAS. Among other somatic mutations, TP53 is mutated in more than 75% of human pancreatic tumors. Genetically engineered mice have proven instrumental in studies of the contribution of individual genes to carcinogenesis. Oncogenic Kras mutations occur early during pancreatic carcinogenesis and are considered an initiating event. In contrast, mutations in p53 occur later during tumor progression. In our model, we recapitulated the order of mutations of the human disease, with p53 mutation following expression of oncogenic Kras. Further, using an inducible and reversible expression allele for mutant p53, we inactivated its expression at different stages of carcinogenesis. Notably, the function of mutant p53 changes at different stages of carcinogenesis. Our work establishes a requirement for mutant p53 for the formation and maintenance of pancreatic cancer precursor lesions. In tumors, mutant p53 becomes dispensable for growth. However, it maintains the altered metabolism that characterizes pancreatic cancer and mediates its malignant potential. Further, mutant p53 promotes epithelial-mesenchymal transition (EMT) and cancer cell invasion. This work generates new mouse models that mimic human pancreatic cancer and expands our understanding of the role of p53 mutation, common in the majority of human malignancies
- …
