67 research outputs found

    Analyzing Learners Behavior in MOOCs: An Examination of Performance and Motivation Using a Data-Driven Approach

    Get PDF
    Massive Open Online Courses (MOOCs) have been experiencing increasing use and popularity in highly ranked universities in recent years. The opportunity of accessing high quality courseware content within such platforms, while eliminating the burden of educational, financial and geographical obstacles has led to a rapid growth in participant numbers. The increasing number and diversity of participating learners has opened up new horizons to the research community for the investigation of effective learning environments. Learning Analytics has been used to investigate the impact of engagement on student performance. However, extensive literature review indicates that there is little research on the impact of MOOCs, particularly in analyzing the link between behavioral engagement and motivation as predictors of learning outcomes. In this study, we consider a dataset, which originates from online courses provided by Harvard University and Massachusetts Institute of Technology, delivered through the edX platform [1]. Two sets of empirical experiments are conducted using both statistical and machine learning techniques. Statistical methods are used to examine the association between engagement level and performance, including the consideration of learner educational backgrounds. The results indicate a significant gap between success and failure outcome learner groups, where successful learners are found to read and watch course material to a higher degree. Machine learning algorithms are used to automatically detect learners who are lacking in motivation at an early time in the course, thus providing instructors with insight in regards to student withdrawal

    A new machine learning based approach to predict Freezing of Gait

    Get PDF
    Freezing of gait (FoG) is a motor symptom of Parkinson’s disease (PD) that frequently occurs in the long-term sufferers of the disease. FoG may result to nursing home admission as it can lead to falls, and therefore, it impacts negatively on the quality of life. The focus of this study is the systematic evaluation of machine learning techniques in conjunction with varying size time windows and time/frequency domain feature sets in predicting a FoG event before its onset. In the experiments, the Daphnet FoG dataset is used to benchmark performance. This consists of accelerometer signals obtained from sensors mounted on the ankle, thigh and trunk of the PD patients. The dataset is annotated with instances of normal activity events, and FoG events. To predict the onset of FoG, the dataset is augmented with an additional class, termed ‘transition’, which relates to a manually defined period prior to the occurrence of a FoG episode. In this research, five machine learning models are used, namely, Random Forest, Extreme Gradient Boosting, Gradient Boosting, Support Vector Machines using Radial Basis Functions, and Neural Networks. Support Vector Machines with Radial Basis kernels provided the best performance achieving sensitivity values of 72.34%, 91.49%, 75.00%, and specificity values of 87.36%, 88.51% and 93.62%, for the FoG, transition and normal activity classes, respectivel
    corecore