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ABSTRACT Massive Open Online Courses (MOOCs) have been experiencing increasing use and popularity in 
highly ranked universities in recent years. The opportunity of accessing high quality courseware content within 
such platforms, while eliminating the burden of educational, financial and geographical obstacles has led to a 
rapid growth in participant numbers. The increasing number and diversity of participating learners has opened up 
new horizons to the research community for the investigation of effective learning environments. Learning 
Analytics has been used to investigate the impact of engagement on student performance. However, extensive 
literature review indicates that there is little research on the impact of MOOCs, particularly in analyzing the link 
between behavioral engagement and motivation as predictors of learning outcomes. In this study, we consider a 
dataset, which originates from online courses provided by Harvard University and Massachusetts Institute of 
Technology, delivered through the edX platform [1]. Two sets of empirical experiments are conducted using both 
statistical and machine learning techniques. Statistical methods are used to examine the association between 
engagement level and performance, including the consideration of learner educational backgrounds. The results 
indicate a significant gap between success and failure outcome learner groups, where successful learners are found 
to read and watch course material to a higher degree. Machine learning algorithms are used to automatically detect 
learners who are lacking in motivation at an early time in the course, thus providing instructors with insight in 
regards to student withdrawal. 

 

INDEX TERMS Machine Learning; Massive Open Online Courses; Statistical Analysis; Big Data  

 

I. INTRODUCTION 

Online education is becoming increasingly widespread within 
the higher education context. There were more than 6 million 
students   enrolled in online courses in 2012 [2]. The new 
bellwether of online educational platforms is Massive Open 
Online Courses (MOOCs) [3]. MOOCs are open educational 
platforms that deliver learning resources through digital 
platforms [4]. The reduction and potential elimination of 
financial, geographical, and educational obstacles led to a 
growing number of learners undertaking online courses. As of 
late 2012, global universities are offering a number of academic 
courses through commercial platforms such as HarvardX, Khan 
Academy, Coursera, and Udacity [2]. 

A variety of resources are used in such courses, including 
video lectures, weekly quizzes, regular assessments, and even 
PDF documents. Additionally, a learner can interact 
asynchronously with the instructors via postings in discussion 
forums. The increased number of enrolled users in MOOCs 
provides an opportunity to researchers to understand and 
analyze learner interactions with the online learning 
environment [2]. 

Learning Analytics (LA) has been used to gain deeper insight 
into course curriculums, course structure design, in addition to 
learner success and failure [5]. LA itself is an efficient analytics 
tool used by researchers to enhance and develop learning 
strategies. One of its distinctive features is the ability to analyses 
log data from online courses in an advanced fashion [5]. 
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LA has been utilized to investigate the reasons behind 
participant enrollment in online classes through the analysis of 
student engagement patterns [6]. The findings demonstrate that 
students engage in online courses for two main reasons, namely, 
feeling immediate satisfaction when undertaking a task, and 
attaining formal recognition by obtaining a certificate. 
Additionally, students have the possibility for flexible 
engagement in high-quality course settings without additional 
financial overhead. A notable limitation of existing studies is the 
consideration of engagement style to evaluated student 
performance, without accounting for the level of student 
engagement as a factor in influencing learner participation. 

Motivation has significant impact on the development of the 
students’ cognitive skills and in enhancing their performance. 
As such, highly motivated students are goal-oriented 
individuals, who tend to expand their experience and overcome 
challenges [7]. In the online context, research indicated that 
most online learners are intrinsically motivated rather than 
extrinsically motivated [8]. Although motivation plays an 
important role in the online learning context, a limited number 
of contemporary studies considered behavioral activity 
interplay factors that could affect participant motivation [9]. 

In this research, we examine the links between engagement, 
performance, and motivation, in the context of geographical 
influences. We employ LA tools in evaluating the links between 
the learners’ educational background, engagement level and 
performance. Moreover, machine learning models are applied 
in the prediction of learner motivational status. Hence, the 
predictors in our experiments are based on quantitative log data, 
rather than questionnaire responses. Until now, most studies 
neglected the use of machine learning tools for analyzing the 
effect of learner motivation on engagement. 

The aim of the experiments in this study is to analyze and 
evaluate log data that reflect learner activity. This analysis will 
facilitate instructors in designing future online courses so as to 
enhance student participation. In addition, the findings will 
provide educators with insight into the association of learning 
style and academic achievement. Finally, the experiments will 
provide an indicative case study to highlight the value of 
learning analytics and machine learning tools in the educational 
context. 

 

II. LITERATURE REVIEW  

A. Engagement in Online Learning Environments  

Student engagement is considered an important prerequisite 
for learning in the online context, impacting on performance, 
motivation, and attrition [10]. Engagement can be classified into 
three main categories, namely, behavioral, emotional, and 
cognitive engagement. Emotional engagement occurs when 
students feel emotionally engaged in a learning activity. 
Cognitive engagement refers to the students’ feeling in regards 
to progress in the academic task, while behavioral engagement 
refers to the level of student participation in the learning activity 
[10]. 

Behavioral engagement is concerned with student behavioral 
activities. The absence of behavioral engagement could 
negatively influence student academic outcomes [10]. 
Behavioral engagement is considered a crucial factor in 
increasing concentration, persistence, and social interaction, 
ultimately resulting in improvements in student performance. 

Learner engagement has been widely investigated in online 
learning. Coffrin et al. [3] employed learning analytics 
techniques in analyzing the patterns of participant engagement 
in MOOCs. The number of video hits and assignment 
submissions were used as features in the assessment of 
completion rates. The results showed that only 29% of 
participants completed their assignments, whereas more than 
60% viewed the associated videos [3].  

Videos and assessments were used to describe the prototypical 
patterns of learners’ engagement in the Coursera platform on a 
weekly basis. Four patterns of engagement were introduced, 
namely completing, auditing, disengagement, and sampling 
[11]. The k-means clustering algorithm was used to find 
subpopulations in the engagement patterns, with results 
indicating that most learners engage with the course for the 
purpose of watching video lectures [11]. Classifying students 
based on students’ interaction with videos is suitable for any 
MOOCs platform that considers only videos lectures and 
assessments. Consequently, the narrow focus on the use of these 
features imposes limitations on the generality of the proposed 
approaches [12]. Other researchers examined the factors 
relevant to the structural aspects of MOOCs design that could 
raise the level of participant engagement [13]. Learner 
comments were used to validate how instructional design 
promotes student engagement. The authors’ findings indicated 
that course material, interaction, and persistent monitoring of 
participant progress are critical elements in increasing the level 
of engagement  [13]. 

Balakrishnan et. al., [14] employed Hidden Markov Models 
(HMM) in predicting student persistence in online courses. 
Courses were split into six-time intervals considering multiple 
behavioral features such as the number of videos viewed and the 
number of post threads on the course forum. The results 
revealed that approximately 1% of the students who watched at 
least 50% of videos dropped from the course [14]. In addition, 
the results indicated that students who do not participate in the 
course forum are more likely to withdraw from the course. 
Hence, the authors demonstrated that HMM provides deep 
insights into issues affecting student retention rates. 

Probabilistic Soft Logic (PSL) was proposed  in [15]  to model 
student engagement. PSL is defined as a paradigm for 
developing probabilistic models. PSL uses first-order logic rules 
to represent variables in the model. Three types of engagement 
were defined in this study, namely, active and passive 
engagement and disengagement. The learners' activity was 
defined as active, when learners demonstrated interaction with 
the course such as posting on the discussion forums and 
submitted assignments. The label of passive engagement was 
assigned to learners who accessed the resources homepage, 
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without proceeding further to specific forms of interaction, such 
as voting on a post, watching lectures and following discussion 
forums. Disengaged learners were defined as those who tended 
to quit from an online course. The authors of the study also 
exanined the links between learner engagement and 
performance. The findings indicated that latent engagement 
enhances the performance of predictive models. As such, the 
PSL model, which accommodated for latent engagement, 
achieved higher performance than the model without latent 
engagement. The value of the Area Under the Curve (AUC) 
metric was equal to 0.7492 for the PSL model with latent 
variables while the AUC acquired a value of 0.7393  for the PSL 
model without latent variables [15]. The authors also find the 
inferring latent variables could help the instructor to understand 
the why students had achieved low performance. 

 

 

B. Incentive Motivation Theory 

Incentive Motivation Theory (IM) is a behaviorist theory of 
motivation developed by Skinner [16]. IM seeks to explain why 
human activity occurs relative to goals. IM theory introduces the 
notion of “ramifications”, which are posited to be the basis for 
task-focused incentives. In particular, ramifications are 
classified into the main subtypes of tangible and intangible [16]. 
Motivation categories are further explained in terms of three 
main dimensions, i.e., intrinsic incentive motivation, extrinsic 
incentive motivation, and amotivation [16], [17]. Intrinsic 
motivation is attained from a student’s perception of a task as 
interesting, challenging, and enjoyable. In contrast, extrinsic 
motivation originates from the expectation of rewards that lie 
outside of the activity itself [16]. Intrinsically motivated 
students feel immediate satisfaction while undertaking a task. 
Conversely, extrinsically motivated students derive satisfaction 
from extrinsic reward mechanisms, such as attaining favorable 
exam marks or social rewards. Amotivation is another category 
of motivation, where the lack of incentives represents a key 
factor in student dropout [16], [17]. 

 

C. Motivation in Online Courses  

In terms of education, motivation is described as a conceptual 
construct that directs and improves student behavior towards a 
specific goal [8]. 

Current studies highlighted the importance of motivation as a 
factor in learner engagement. Much of the research reported in 
the literature focuses on the validation of motivational 
indicators within the setting of online courses. Osborne et al., 
[18] found a strong correlation between motivation and domain 
identification within MOOCs (e.g., job prospects, knowledge 
expansion, social development, etc). The authors demonstrated 
that social factors play an important role in increasing student 
engagement and enhancing cognitive skills. 

 
To validate motivation in MOOCs, several studies have 

designed questionnaire frameworks based on the Glynn scale 
(e.g., “Science Motivation Questionnaire II”). In [19], the 

authors employed the Glynn scale to evaluate four types of 
motivation, namely, intrinsic motivation, self-determination, 
self-efficacy, and career motivation, comparing English with 
Arabic participants within the Coursera platform [7]. The results 
revealed a similar pattern of motivation categories for both 
English and Arabic participants within the studied setting [7]. 
The Situational Motivational Scale (SIM) was adopted in [9] to 
measure learner motivation on two “teacher education” courses, 
delivered by the New Zealand Tertiary Institution. Four 
subtypes of motivations were assessed in these studies, namely 
intrinsic motivation, external regulation, identified regulation, 
and amotivation. The students were asked to respond to 16 SIM 
questions related to particular assignments. The results 
demonstrated that participants in both case studies exhibited 
high levels of identified regulation and intrinsic motivation [9]. 

 
Other studies investigated how motivation can positively 

influence learner performance. For example, Barba et al., [20] 
demonstrated that motivation has a significant impact on learner 
participation. Learning Analytics was used to evaluate learner 
participation and performance in Coursera. The authors utilized 
video hits and quiz attempts as features, serving as an indicator 
of learner participation. The results showed that the most 
successful participants tend to be intrinsically motivated [20]. In 
another study, sentiment analysis of participants’ interview 
transcripts within the Coursera platform was adopted in order to 
investigate the association between motivation and engagement 
[21]. Acquired knowledge and work were reported as the main 
factors of influence for learner motivation in online course 
participation. In this work, learner experience was found to be a 
critical factor affecting engagement and motivation levels. 
Learners with higher levels of education were more likely to 
engage than those with less formal education, as they were 
found to have the ability to overcome barriers including 
technical and subject difficulty [21]. 

 
According to Cho et al., [8], Self-Regulated Learning (SRL) 

is a key factor for the achievement of motivation in learning. 
The SRL framework identifies student control, autonomy in the 
learning process, and time management as factors for successful 
goal achievement. A highly autonomous approach towards 
learning is a distinctive characteristic of self-regulated learners. 
Cho et al., examined SLR in the context of motivation and 
learning strategy in an online mathematics course. The results 
indicated that learning delivery strategies did not significantly 
influence motivation. The researchers concluded that self-
regulated learners are goal orientated and therefore tend to adopt 
critical thinking strategies in order to solve difficult tasks and 
develop skills [8]. 

 
Recent research works consider the use of questionnaires to 

evaluate student motivation in online learning activities. 
Research reported a strong correlation between learner 
engagement, motivation, and performance, though such results 
rely on relatively limited forms of evaluation. The research in 
this work differs from previous approaches as it employs 
learning analytics methodology to analyse the correlation 
between levels of learner engagement and performance. 
Moreover, machine learning is used to identify the lack of 
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motivation in learners, through the discovery of latent patterns 
of student engagement. 

 

 D .Existing Machine Learning Approaches in Educational Data 
Analytics 

Within the educational setting, machine learning is an 
effective technique that has been widely applied, primarily to 
the prediction of student performance in both traditional and 
virtual environments. Kabakchieva [24] applied supervised 
machine learning methods in predicting student performance at 
a Bulgarian University. The author considered 20 predictive 
attributes extracted from personal information and the pre-
university characteristics of students. The Bulgarian Score 
Level scale was used to categorize student performance into five 
classes, i.e., “Excellent”, ”Very Good”, “Good”, ”Average”, 
and “Bad”. Several supervised ML techniques were used to 
predict student performance, including Decision Trees, Naive 
Bayes, Bayesian Networks, and k-Nearest Neighbors. The 
results demonstrated that the utilized classifier models suffer 
from low performance, exhibiting an average accuracy range in 
the range of 52-67 % [22]. Asif et., employed  data mining 
methods in predicting the performance of undergraduate 
students at the Engineering University in Pakistan. Similar to 
[24], five levels of outcomes were considered as targets, for 
which the GPA was employed as a predictive feature. The 
results revealed that the Naive Bayes classifier achieved the 
highest accuracy, with a value of 83% [23].  

A technique called Deep Knowledge Tracing (DKT) was 
introduced in [24]. The authors applied Recurrent Neural 
Networks (RNN) on the Khan Academy online courses to 
predict the future performance of students. RNN is a dynamic 
model with the ability to continuously represent the state of 
latent knowledge over time, while evaluating the level of 
student knowledge. A number of variables were considered for 
the DKT model, including the student’s previous knowledge, 
student clickstream features, latent engagement, factor 
difficultly associated with each task, and additionally, the 
duration of tasks taken by the student during the online sessions. 
The results showed that the RNN model achieves good 
performance with an AUC value of 0.85 [24]. 

Various researchers investigated attrition issues within   
MOOC environments. Kloft  et al., [26] applied support vector 
machines to predict the likelihood of learner withdrawal from 
online courses, considering only click stream features [25]. 
Although only one feature was used in the predictive model, 
feature extraction in the time domain was used to derive higher 
order attributes, such as the number of sessions, the number of 
videos watched, and the number of coursework page views. The 
results showed an accuracy improvement of 15% in the early 
weeks of the courses, with the highest accuracy obtained at the 
end week of the courses [25]. 

Al -shabandar et al., investigated factors driving student 
withdrawal within MOOCs. The study encompassed data of 
7,000 learners enrolled in five courses at Harvard University 
and MIT. Various machine learning algorithms were applied 
with the highest prediction accuracy of 94% obtained using the 

Bagged Cart model, followed by neural networks, with an 
accuracy of 89% [26]. 

At-risk students were identified in [27] using the Virtual 
Learning Environment Dataset (VLE) of the Open University. 
Two sets of features were considered in this study, namely, 
behavioral attributes and demographic features. The application 
of machine learning methods indicated that the proportion of at-
risk students increased over time. As such, the precision value 
dramatically increased from 0.50  at the beginning of the course 
to  0.90 at the end of the course, while the Recall average value 
was stable in the range of 0.30-0.50. 

Most of the existing work uses surveys and questionnaires to 
evaluate student motivation in online courses [36]. Machine 
learning was applied in [36] to predict student motivation. Three 
sets of features were considered in this work. The “unigram” 
feature, which represents the main features set. “Linguistic” 
features only used student comments in post form. When 
student comments are positive, then the post is classified as 
motivated, otherwise unmotivated. The third set of features is 
“Unigram+Ling”, which combines the unigram feature with 
linguistic features. The results of logistic regression 
demonstrated that “Unigram+Ling” achieves the best 
performance with values of 73%, and 62% for Accountable and 
Fantasy courses, respectively [36]. 

III. MOTIVATION 

One of the main shortcomings of existing research is the lack 
of explanation for the association between motivation and 
engagement. The majority of studies employ both quantitative 
and qualitative methods to measure motivation within MOOCs, 
relying on the analysis of transcripts, interviews, and survey 
data. Consequently, learner motivation is evaluated from a 
rather narrow perspective, which does not account for learner 
interaction patterns within the MOOCs environment. 

 
Two sets of experiments are conducted in this research. In the 

first experiment, we investigate the link between the level of 
engagement and performance, considering the geographical 
location of the learners. Behavioral features are employed to 
examine the association of engagement level with performance. 
As behavioral features are represented with continuous 
variables, statistical techniques are used in their analysis and 
interpretation. The statistical analysis makes inferences about 
the successful and failing learner groups in terms of the number 
of usage videos and read chapters. To evaluate whether the 
descriptive results are significant, we use hypothesis testing 
(Analysis of Covariance). The findings of the first experiment 
could facilitate educators in gaining insight into the association 
of behavioral engagement with academic achievement. 

In the second set of experiments, the target is to identify 
learner motivational status and the reasons behind student drop 
out from varying viewpoints. Traditional statistical analysis has 
limited ability in predicting student motivational status as it is 
not designed to discover the non-linear features that separate the 
students' motivational categories. Moreover, statistical analysis 
requires human input in making assumptions about the 
relationships between variables. Therefore, additional analysis 
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was performed using machine learning techniques that do not 
rely on classical assumptions. 

Machine learning approaches are used to categorize learner 
motivation using predictors extracted from the log data, 
allowing the interaction of learners to be evaluated. Machine 
learning is adopted due to its capabilities in analyzing high 
dimensional log data, of arbitrary form, characterized by both 
noise and complex non-linear pattern components. In the 
context of the present work, machine learning can be used to 
identify the lack of learner motivation. Moreover, machine 
learning enables the analysis of arbitrary forms of correlation 
between behavioral and demographic features within the online 
course environment.   

   

IV. RESEARCH METHODOLOGY  

A. Data Description 

The dataset used in this study was obtained from Harvard 
University. Harvard University, in collaboration with 
Massachusetts Institute of Technology (MIT), pioneer and 
develop MOOCs. The database comprises 17 courses 
undertaken through the edX platform, during the first year of 
their delivery. Across all courses, 597,692 participants were 
registered, of which only 43,196 users achieved certification. 
However, around half of the participants never engaged with the 
courses [28]. The learning material is delivered through a 
sequence of video lectures, in addition to courseware chapters 
and a set of quizzes. 

    In this study, two courses were selected for analysis, namely, 
“Introduction to Computer Science” and “Circuits and 
Electronics”. The dataset includes some rows with empty 
values, which were removed in the experiments as part of the 
data cleaning process.    

1) Features 

All database features are selected in this study, as shown in 
Table 1. Harvard University proposed the use of these variables 
based on a self-reported survey [29]. They delivered the survey 
to participants encompassing various types of questions 
regarding the features that potentially impact on learning 
outcomes. Moreover, they followed the findings of previous 
research to determine the factors that influence student retention 
in online courses, and determined the parameters that should be 
taken under consideration, such as student activity and 
demographics. 

Three sets of features are considered in the Harvard dataset,  
including behavioral (6 features), demographic (5 features), and 
temporal (2 features), in addition to the user id [28]. The data 
representation was therefore encoded as a series of vectors. 

As shown in Table 1, behavioral features comprised the 
variables“Nevent”,“nplay_video”,“Nchapters”, nforum_post”, 
which are  integer variables representing discrete counts for 
each attribute, while “explored” and “viewed” are binary 
behavioral variables. The “explored” variable is encoded as 1 
when a user accessed more than half of the courseware chapters 
and 0, otherwise. When learners access the courseware home 

page, including the problem and video sets, the value of 
“viewed” is set to 1 and 0, otherwise.  

The “educational background” is a demographic parameter, 
which includes the level of education and consists of a number 
between 1 and 5, selected from the set of {“less than secondary”, 
”secondary”, ”bachelors”, ”masters”, ”doctorate”}, 
respectively. The variable “Gender” is given as a categorical 
demographic variable. The variable, “YOB” stands for the Year 
of Birth.  The variable “final_cc_cname_DI” represents the 
student geographical area, and taken from the set of {“Africa”, 
“Asia”, “Australia”, “America”, “Europe”}. The temporal 
domain raw fields include {“Launch date”, “Wrap date”, 
“start_time_DI”, “last_event_DI”}. Variable “Launch date” 
represents the course start date, while variable “Wrap date” 
represents the issue date of the certification. Variable 
“start_time_DI” represents the participant's enrollment date, 
while variable “last_event_DI” is defined as the date of last 
student activity interaction with the courseware.  

TABLE 1 

Harvard Dataset Description 

Features Type Description 

User-Id Demographic    Learner identification number 

YOB Demographic    Learner date of birth 

Gender Demographic    Learner Sex 

LOE Demographic    Learner educational level 

final_cc_cname_DI Demographic    Learner continent area  

Start_time_DI Temporal  First date learner actvity  

last_event_DI Temporal Last date learner actvity  

ndays_act Temporal Number of unique days that learner 

interact with course  

Nevent Behavioral Number of click stream events 

nplay_video   Behavioral Number of videos viewed by learner 

Nchapters Behavioral Number of chapters read by learner 

nforum_post Behavioral Number of forum postings by learner 

Viewed Behavioral user access to home page of videos  

Explored Behavioral user access to home page of chapters  

 

2) Target Classes  

As previously mentioned, two courses were selected for the 
analysis, i.e., “Introduction to Computer Science” and “Circuits 
and Electronics”. In the  former, the course focuses on teaching 
students the use of computation in task solving [29]. The latter 
course is an introduction to lumped circuit abstraction. The 
course is designed to serve undergraduate students at 
Massachusetts Institute of Technology and is available online to 
learners worldwide [30]. The two courses are selected in our 
analysis to examine the level of engagement and intrinsic 
motivation for foundation students. 

Fall courses were delivered in the fall of 2012 and spring 
courses were covered in the spring of 2013. The courses are 
entitled: “Circuits and Electronics Fall”, “Circuits and 
Electronics Spring”, “Introduction to Computer Science and 
Programming Fall”, “Introduction to Computer Science and 
Programming Spring” as shown in Table 2 [28]. 
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All four courses were ran over a 15 weeks period, including a 
final exam and two midterm examination periods. There were 
approximately 150 videos and 14 chapters released in each 
course. To earn certification, learners must gain a mark above 
40% in their overall grade. The overall average grade is 
calculated from course components, including quizzes (10%), 
weekly courseware set (40%), two mid term exams (25%), and 
final exam (25%).  

The certification is considered to be an inaccurate indicator of 
learning within MOOCs [29]–[31]. Due to free enrollment, a 
large number of learners interact with the course without aiming 
to undertake the final exam. Moreover, participants who register 
after the course end date are precluded from obtaining a 
certificate. However, certificates are a good indicator of 
learning outcomes for registrants who persisted in completing 
the course [28].       

A data driven approach was employed in this study to 
categorize learners. The algorithm describes the taxonomy of 
learners. It relies on Incentive Motivation Theory (IM), where 
the following categories are defined: 

Let V represent a set of students records, where |V| = N is the   
number of students. 

Let Ri ∈  represent the i th student record, given as: 

Where  - the identity of the student for the ith 
record 

 �  - the grade for the ith student record 

  - the start date of the associated student 
with respect to the course 

  - the end date of the associated student 
with respect to the course 

   - the identity of the course associated 
with the ith entry 

 �  - the launch date of the course referred to 
by ci 

  - the wrap date  of the certification is 
issued by ci 

  - the number of videos viewed by the ith  
student 

  - the number of chapters read by the ith  
student 

 

Let us considered the retention, completion and attrition learner 
groups defined as: 

Retention Learners (intrinsically motivated): defined as 
those who engage in a given course without aiming to earn 
certification as defined in Equation 1: � =  {∀ ∈ | � =   [[ � < ]  [  < ]]} (1) 

where  is the student records , g is the grade,  is the course 
start day, � is the course launch day, w is the course wrap date 
and   is the course end day. 

Completion Learners (extrinsically motivated): undertake 
courses with the expectation of obtaining certification. The group 
is further categorized in two subsets, those learners who pass and 
achieve certification, and those learners who do not pass. Pass 
completion learners are defined in Equation 2, while Failure 
completion learners are defined in Equation 3. 

 

 

 

 

Attrition Learners (Amotivation): defined as learners who 
withdrew from the course within the same day as expressed in 
Equation 4. 

 

 

 

Algorithm 1 shows the groups of learners according to IM 
theory. Three groups were defined by considering the students' 
exam grades, course start and end dates, in addition to the first 
and last date that students interacted with course. In both the � 
and � groups, students did not undertake the assignment, 
however, in the  � group, engage in the course longer than the � group. Completion learners can be further classified into 
{CLsc, CLsn}.The assignment cut off grade was used for 
distinguishing between these two groups. 

 

 

 

    

TABLE 2 
Course  Acronym 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

� = {∀ ∈  |  �  [[ �]  [ ]]} (2) � = {∀ ∈  | < � <  [[ �]  [ ]]} (3) 

 

   � = {∀  ∈  | � = = } (4) 

 

TABLE 2 
Course  Acronym 

Course Course  Acronym 

Circuits and   Electronics Fall  Electronics Fall 

Circuits and  Electronics Spring Electronics Spring 

Introduction to Computer Science and 
Programming Fall 

Computer Fall 

Introduction to Computer Science and 
Programming Spring 

Computer Spring 

 

Algorithm 1 Taxonomy of learners 

Algorithm 1: Learners group 

1. ∀ ∈ � , ∃  :  = < , � , , , , � , , ,  > 
2. ∈ �  ↔ � =  ;  � < ,   <  
3. ∈ ↔ � =  ;  =  
4. ∈ �  ↔ �  ;  � ,   
5. ∈ �  ↔ � <  ;  � ,   
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B .Data Pre-Processing 

Due to the large size of the dataset, a sample of 7 000 log file 
entries was used in each experiment. The log file records 
represent completed activities undertaken by learners on the 

respective MOOCs platforms, where each entry corresponds to 
a single user session. 

The data pre-processing is divided into two distinct phases, 
namely, data cleaning, and data transformation. Data cleaning 
was used to remove missing values, reduce noise, and remove 
inconsistencies within the data. On inspection, approximately 
15% of the observations were missing for several  behavioral 
variables, namely, Nevent, nplay_video, Nchapters and 
nforum_post. The YOB, Gender and LoE_DI attributes also 
included missing values. As a result, all incomplete 
observations were excluded from the dataset. Moreover, 
duplicate rows in the dataset were also removed. 

The Harvard dataset features have skewed distributions. 
Consequently, the data could suffer from the presence of non-
normality. To overcome this issue, the Box-Cox transformation 
was used. This is a member of the class of power transform 
functions, which are used for the efficient conversion of 
variables to a form of normality, e.g., the equalization of 
variance, and to enhance the validity of tests for linearly 
correlated variables [32]. The data was furthermore processed 
via scaling and centering such that a mean value of 0 and a 
standard deviation of 1 were obtained. 

C .First Set of Experiments 

Various statistical methods were employed in this research to 
understand the behavioral patterns of learners and explore how 
behavioral engagement can influence performance in MOOCs 
courses. Statistical analysis is capable of tracing and tracking 
learning activities in online courses enabling course designers 
to gain insight into learners’ success and failure within MOOCs 
platforms. A brief description of the statistical methods explored 
in our experiments is provided below. 

Descriptive statistics: This considers the utilization of the 
mean and the standard deviation method (�, � . These 
parameters are used in the first set of experiments to compare 
successful completion learners and unsuccessful completion 
learners in terms of geographical location and engagement level. 
Students were distributed in five geographical areas, and two 
behavioral features were considered, namely, nplay_video and  
Nchapters. Learners were allowed to reattempt activities 
frequently; i.e., there was no limit on the number of recorded 
attempts for each student per activity. Therefore, it was not 
possible to set a threshold for the number of click events for 
users watching the videos, and reading pdf files. Descriptive 
statistics may assist educators to identify the reasons behind 
student success and failure.  �, �  descriptive statistics are 
defined as follows [33]: 

              �  = ∑��
=  

 (5) 

  �  = √ ∑��= ( − � )  

 

(6) 

 where j is the location parameter, Nj is the total number of 
students at location j and Xji is a student access to an online 
course  from location j. 

 

Analysis of Covariance: To evaluate the result of descriptive 
statistics, analysis of covariance (ANCOVA) was used. 
ANCOVA is a statistical test used to test the mean of the 
independent variable across two groups. In this  experiment, 
ANCOVA  was used to determine whether the mean values � 
of successful and failing learners are identical with respect to 
geographical location and engagement level. The ANCOVA 
variable is defined as [34]: 

             =∑ � + + �  − +  �      (7) 

where m is the number of geographical locations {,…, }   
and n is the number of successful and failing students. In this 
case, � is the population mean and Cj refers to the  group 
mean.  is the effect of the j th geographical location on the 
independent variable and �  is the error term per j th  location. � 
is the slope of regression line.  is the the observation under  the 
jth group.  is the covariate values of success and failing  
students Si in the j th geographical location. �( ∈ ) is the 
probability of student Si  belong to particular geographical area. 
The  is defined  according to the following equation 
he  parameter is defined as:  = #{  ,..,  ∈ }=∑ = ( ∈ ) (8)  

 

 

 

Where ( ∈ ) is the probability of student Si  belonging to 
a particular geographical area Gj.  

Chi-squared Test: The Chi-squared test is a statistical 
hypothesis test which was used to examine the difference 
between failure and success groups per course with respect to 
the learners’ academic level.  The Chi-squared test summarizes 
differences between observed frequency values and expected 
frequency values for each educational level. The results of the 
Chi-squared test may help educators in determining whether the 
educational level factor can impact on learner performance. The 
Chi-squared test is defined below [35]. 

 
Let r represent the levels of educational background and n 

represent the total number of successful and failing students: 
where  is the number of successful and failing students per j th 
educational level  described   as [36]: 

 

�  = ∑ ( − )
 

       (9) 
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 = #{  ,..,  }∈ � =∑ = ( ∈ � ) (10) 
 

 is the expected frequency of the number of successful and 
failing students per j th educational level and ( ∈ � ) is  the 
probability of student Si belonging to the ℎ educational level .   is given by[36]:  

 

1) Engagement Level between Successful and Failing Learners  

Descriptive statistics are computed and stratified according to 
the demographic region. The engagement levels of learning 
activities are determined. A comparison of failing groups with 
successful groups was conducted, accounting for the 
demographic features of {“Africa”, “Asia”,” Australia”,” 
America”,” Europe”}, in the context of the behavioral features 
of {nplay_video, Nchapters} . 

The results in Tables 3 and 4 indicate that there is a significant 
difference between the two groups for each course. The results 
also demonstrate that successful learners watch more videos 
than failing students. Europe dominated the top rankings in the 
successful learners group with � = { . ; 1010.67; 560.85} 
for “Computer Science Fall”, “Electronics Spring”, and the 
“Electronics Spring” courses, respectively during  However, the 
highest number of successful learners in “Electronics Fall” lived 
in Africa with � =1304.6. 

The results also demonstrate that “Electronics Fall” is the most 
watched course with approximately 60% of the videos viewed 
by certified students. Conversely, “Computer Science Spring” 
was the lowest viewed course, where successful learners viewed 
only 30% of the videos. Within the successful group of learners, 
European students watched an average of 42%-51% of videos 
in both courses, in contrast to the Australian  and African 
counterparts, who viewed the lowest percentage of videos. In 
the “Computer Science Fall” and “Electronics Spring” courses, 
European learners undertook once again the highest percentage 
of videos usage,  with approximately 50% of  the video 
resources used, and conversely only 1-2% of videos viewed by 
African and Australian learners. Considering the failing group 
of students, the largest proportion of videos were watched by 
Asian participants, who used  an average 14% of the video 
resources in both the “Electronics Fall” and “Computer Science 
Fall” courses . In the “Electronics Spring” and “Computer 
Science Spring” courses, American students used around 23% 
of the videos. In the four courses, the  lowest rate of video usage 
was reported again for Australian  participants.  

The results indicate a significant variability between 
successful participants and failing learners in respect to the 
number of chapters read. In general, successful learners read 
learning materials three times more than unsuccessful learners. 
For example, in America, the mean number of chapters read is 
reported as  � =  { . ; . ;  . ;  . } in  
“Electronics Fall”, “Computer Science Fall”, “Electronics 
Spring” and “Computer Science Spring” courses, respectively, 

for the successful group, in contrast to a reduction by  
approximately a third in the failing group peers, where � ={5.38;4.68;6.42;4.81}respectively. 

In regards to the “Electronics” courses, the most successful 
students were reported as Asian, who read 50% of the available 
learning resources. Europe achieved the highest successful 
reading activity, with 46% of chapters viewed by the group in 
the “Computer Science” courses. On average, the percentage of 
students in the failure group who view course chapters was 70% 
for the “Electronics Fall” and 66% for the “Electronics Spring” 
courses, respectively. 

Participants within failure group read only a small proportion 
of the available course material. Moreover, the proportion of 
failure students who engaged in reading chapters rose to 90% in 
the “Computer Science Spring” course, for which the 
percentage of reading material was slightly higher than in the 
other courses. For example, approximately 2-20% of the course 
documents were read by European and African students in the 
“Electronics Fall” and “Electronics Spring” courses, whereas an 
average of 16-22% of chapters were read by these learners in 
the “Computer Science Spring” course. In general, the 
engagement level of the successful group is higher than the 
failure group, when considering the “nplay_video” and 
“Nchapters” parameters. 

Figures 1 and 2 show the box plots in respect to the number of 
chapters read and videos watched, respectively. In general, the 
engagement level of the successful group was higher than the 
failure group, in terms of the “nplay_video” and “Nchapters” 
features. The box plots show that the majority of successful 
learners in the “Electronics Spring” and “Electronics Fall” 
courses prefer reading course chapters rather than viewing 
videos. The number of videos viewed by the successful group is 
slightly higher in the “Computer Science Fall” course rather 
than the “Computer Science Spring” course. However, the 
percentage of reading documents is similar in both courses.  

In this study, ANCOVA was used to determine whether the 
mean values of the successful and failure learner groups were 
identical regarding the engagement level. The results revealed a 
notable difference between the two groups across all courses. 
The p-value was (p<0.0002) for all behavioral features. there is 
a significant difference between certified versus failure learner. 

 

 

 

   

 

                 = # ∑ = ∈ � = ∑ = ∈ �  
 

(11) 
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                                                                                                                                               TABLE 3 

                                                                          Descriptive Statistics Analysis: Failing Learners 

  

 

TABLE 4 

Descriptive Statistics Analysis: Successful Learners 

  
 

 

 

 

 

Courses  Mean                                                                                         SD 

“2012 Courses” Africa Asia Australia America Europe  Africa Asia Australia America Europe 
Electronics Spring 

 
           

nplay_video 
 

504.077 153.25 114.34 223.64 81.23  663.54  33.65 164.12 375.71 303.10 

Nchapters 6.55 5.49 5.26 5.8333 6.27  4.12 3.52 3.89 
 

3.70 4.02 

Computer Fall 
 

           

nplay_video 
 

 213.59 184.04 162.11 76.167 202.78  316.23 286.23 287.63 282.96 267.50 

Nchapters 4 .97 5.22 4.67  4.68 5.33  3.57 3.58 3.48 3.20  3.58 

“2013 Courses” 
 

           

Electronics Spring            

nplay_video 231.17 1  144.25 247.21 209.72 220.53  575.10 256.97 202.88 312.27 3315.21 

Nchapters 6.36 5  5.90     6.81  6.42 5.92  4.91 3.60 4.47 3.86 3.41 

Computer Spring            

nplay_video 123.13 1  134.20 105.14 130.83 140.05  174.90 266.48 173.74 203.19 217.06 

Nchapters 5.08 5  5.21   4.64 4.81 5.27  3.40 3.53 3.09 3.27  3.46 
 

      Courses  Mean                                                                                         SD 

  “2012 Courses”   Africa  Asia  Australia  America Europe  Africa Asia Australia America Europe 

  Electronics Fall 

 

           

nplay_video 

 

1304 .6 411.76 729.11 862.67 1177.83  1321.5 711.16 1148.48 912.27      1342 

Nchapters        16.34 15.16 14.3 16.30 16.42  2.09 2.12 3.62 1.63 1.64 

   Computer Fall 
nplay_video 
Nchapters        

           

5  538.64 499.78 720.20 634.12 
 

734.74  579.90 759.37 929.42 509.38 
 

753.15 
 

16.41 
 

16.116 
 

16.36 16.94 
 

17.11  2.34 2.62 
 

2.54 
 

1.69 1.61 

“2013 Courses”            

Electronics Spring        
 

    

nplay_video 

  Nchapters    

     616.55 333.50 
 

212.66 
 

801.70 
 

1010.67 
 

 704.34 505.91 328.35 
 

609.45 
 

1258.61 
 

17.61    16.01 16.43 17.94 17.35  2.25 
 

2.80 2 2.22 2.33 

  Computer Science Spring 

nplay_video 

 Nchapters    

           

287.14 319.96 342.6 472.37 
 

560.85 
 

 258 458.80 
 

224.29 
 

410.11 
 

567.89 
 

16.6 16.63 16.93 
 

16.54 
 

16.83 
 

 1.40 1.46 1.334 
 

1.56 
 

1.51 
 



VOLUME XX, 2017 9 

 

 

 

2) Educational Level of Failing and Successful Learners      

         In this section, the association between academic qualifications, 
demographic features and learner performance is studied. Table 
5 illustrates the Chi-squared results. The df stands for the 
degrees of freedom and can be defined as the number of 
independent values that vary in the final calculation. The result 
which indicate a p-value of (p < 0.05) for all courses except the 
“Electronics Spring” course, thus allowing for the rejection of 
the null hypothesis and demonstrating that the learners’ 
educational background is associated with the learners’ 
performance level. 

Figures 3 and 4 show the distribution of successful and failing 
learners for each of the courses with respect to their educational 
level. Overall, most completion learners are reported as 
secondary, Bachelors and Masters qualified, with a smaller 
number of doctorate learners aiming to earn certification. An 
average of 40% of learners who have Bachelors or secondary 
degrees failed in the “Electronics Fall”, “Computer Fall”, and 
“Computer Spring” courses. Around 50% of certified learners 
in the “Electronics Fall” course  have a secondary degree, while 
the percentage of such learners drops to 30%-35% in the 
“Computer Spring” and “Computer Fall” courses.  

Most successful learners with a Bachelors degree are 
shown in the “Electronics Fall” course. Figures 4 and 5 also 
show that learners with less than secondary and doctorate 
qualifications reported the lowest percentage of participation 
across all courses. An average of 2% of students with less 
than secondary degrees failed in the “Electronics Fall” and 
“Electronics Spring” courses, while conversely, the 
percentage of failing students in the “Computer Science 
Fall” and “Computer Science Spring” courses is 2% higher, 
with doctoral qualifications applicable to approximately 
0.5%-2% of the student participants.  

The Chi-squared test and associated Figures demonstrate 
that the learners’ educational level impacts on their 
performance. In Table 5, The proportion of successful 
students who have a Masters degree is reported to be around 
25%-30% in the “Computer Science Spring” and “Computer 
Science Fall” courses, while the percentage of Masters 
qualified learners drops to 18% for  the failing groups in both 
courses.  

TABLE 5 

Results of the Chi-squared Test comparing failing learners vs successful 
learners by educational level 

Course χ2 statistic df P-value 

Electronics Fall 32.012 4 1.902e-06 

Electronics Spring 3.4134 4 0.4912 

Computer Science Fall 34.734 4 5.268e-07 

Computer Science Spring 64.434 4 3.386e-13 
 

  

Fig. 1 Box plot  of failing and successful learners per chapter read 

Fig. 2 Box plot  of failing and successful learners per video viewed 

 



VOLUME XX, 2017 9 

 

Fig. 3. Successful Learners by Educational Level           

 

Fig. 4 Failing Learners by Educational Level 

 

3) Experiment Discussion 

An empirical comparison between failing and successful 
learner groups in the first experiment reveals that both 
demographic and behavioral features could significantly impact 
on learner performance in an online course. The results of 
descriptive statistical analysis show that Europe ranks the 
highest in terms of learner success rates, while Asia reports the 
highest ratio of failing group participants. Due to the lack of 
advanced technological integration within universities and 
colleges in Asia, students in these regions are likely to face 
technical issues. Additionally, the language of instruction is 
considered as another barrier, since courses are delivered in 
English, hence learners might be less motivated to exchange 
knowledge with other participants. 

 Accordingly, analysis of such descriptive statistics could 
assist educators and course instructors in enhancing learning 
resources by early identification of at risk students. Algorithm 
2 shows our proposed statistical analysis process for the 
separation of CLsn and CLsc learners, while Figure   5 shows 
the flow chart of the proposed algorithm. Th mean (µ), Standard 
deviation (SD) are computed per each geographical location In 

this case, t1 and t2 are statistically significant thershold values, 
which should be determined according to the learners behaviors 
related to a specific region.Furthermore, the Chi-squared test 
was applied to investigate the presence of a significant 
difference in the educational levels of learners between the 
successful and failing groups. The results suggest that the 
educational background could be an important factor affecting 
learner performance in online classes. Masters qualified 
students show the largest percentage of successful completion. 
While statistical analysis is informative, it is not designed to 
capture arbitrary non-linear patterns. As a result, such 
procedures require expert assumptions about the form of the 
data prior to analysis, relying on the notion of a super 
population whose form must be chosen on an a priori basis [37]. 

Morever, in the context of our investigation, hypothesis tests 
and inference procedures are not conducive to the identification 
of withdrawal students, since the data is not guaranteed to 
satisfy classical statistical constraints. To understand the 
reasons behind student withdrawal, important factors affecting 
learner motivation need to be identified thus leading to the 
application of advanced  learning analytics methods. 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 
  

Algorithm 2: Proposed Statistical Analysis for ���  ��  ���� learners 

1.  ∀ ∈ � , ∃  :   = <, � , , , , � , , ,  > 

2. ∈   i= 1,...,n, where n is the number of students 
3. Let c ∈ = MOOCs course and l ∈ L = Geographical location 
4. ∈ =  {      � �  �} 
5. Find    
6. Calculate � , �     
7. Find    
8. Calculate � , �    
9. If  � , �  <  � , �   <   
10. ∈ �   
11. Else  ∈ �  
       where t1  and t2 are predefined threshold values 

 

 

 

 
Fig. 5 Algorithm 2 Flow chart 
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D. Second Set of Experiments 

In this set of experiments, a number of machine learning 
algorithms are applied in the prediction of learner motivation. 
The purpose of this investigation is to assist instructors in early 
detection of lack of participant motivation in MOOCs. Machine 
learning provides the ability to model and autonomously 
categorize learners into motivation classes. In this investigation, 
learner behavior in conjunction with learning outcomes is 
considered in the classification of learner motivation cues based 
on IM theory. Multi-class classification is used, where the set 
of labels, 1,….,L, represents the target classes.  Learner 
motivation is classified into three classes/labels, i.e., intrinsic, 
extrinsic, and amotivation. The training dataset consists of the 
pairs ��, �� , where �� ∈  ℝ�, denotes features of i th 
observation and �� are the associated targets, �� ∈{1,…,L}. 

The training set consists of a total of 4,060 data points which 
were randomly sampled from the subset of the courses 
considered, namely, “Electronics Spring” and “Computer 
Science Spring”. Subsequently, a further 4,000 data points were 
randomly sampled  from a separate subset of courses, 
comprising “Electronics Fall” and “Computer Science Fall”, 
which were then used to evaluate the generalization 
performance of the classifier models. The classifier models 
were trained using the data from one set of course (i.e., Spring), 
and the learned predictive models were tested on a previously 
unseen set of courses (i.e., Fall). This process supports the 
investigation of the generalization of the associated mappings, 
learned by the classifiers, to be examined beyond the specifics 
of an individual set of courses. The percentages of patterns from 
the intrinsic, extrinsic and amotivation classes are 29%, 29% 
and 42%, respectively.  

The confusion matrix was used to evaluate predictive model 
performance. Furthermore, the sensitivity, specificity, F1-
Measure, and accuracy were used for the purposes of 
evaluation. Precision or positive predictive value (PPV) is 
defined as the ratio of true positives (TP) over the total number 
of positives, P=TP+FP, where FP is the number of false 
positives.  Recall or negative predictive value (NPV) measures 
the ratio of true negatives (TN) over the total number of 
negatives, N=TN+FN, where FN is the number of false 
negatives. The F1-Measure is used to test the accuracy of the 
classifier models, accounting for both precision and recall. 
Specifically, the F1-score is defined as the harmonic of the 
precision and recall values [38]. The performance measures are 
defined as: 

Sensitivity = True Positive Rate (TPR) 

TPR = ̂ = ⨁| = ⨁ ≃   ���  
 (12) 

 

  Specificity = True Negative Rate (TNR) 

TNR = ̂ = ⊝ | = ⊝    (13) 

 

  False Positive Rate (FPR) 

FPR= ̂ = ⊝ |  = ⨁  ≃ 
���  

(14) 

 

 False Negative Rate (FNR) 

FNR= ̂ =  ⨁|  =⊝  ≃ 
���  

(15) 

 

Accuracy (ACC) 

̂ = ) ≃  
TP+TNP+N  

(16) 

 

 
where �̂ and � are random variables that define class 

probability distributions for the predicted response and the 
actual class, respectively. The class outcomes are denoted as 
(⨁  for the positive class and (⊝  for the negative class 
outcomes, respectively. Consequently, TP, TN, FP, FN, may be 
derived through appropriate computations applied to the 
empirical prediction responses and respective correct class 
values, as given in Equations 12,13,14, and 15. 

The Receiver Operator Characteristic (ROC) and Area Under 
Curve (AUC) metrics are also considered. The ROC is a 
graphical representation in which TPR is plotted against FPR, 
producing a parametric curve that may subsequently be used to 
select appropriate cut-off values. The AUC is defined as: 

 

AUC=∫ TPP    ��� = ��  ∫  �
 

(20) 

 

The AUC is used to measure the predictive quality of a 
classification model, with the perfect classifier producing a 
value of 1. A probabilistic classifier randomly assigns scores 
for positive instances  and  negative instances [39]. The scoring 
is computed based on the Mann Wilcoxon test (w) rules. The 
Mann Wilcoxon test is a nonparametric test used to detect if the 
observations in two different populations are identical. The w 
test rules are described as [40]: 

Precision (PPV)  

P= TP+TPFP      (17) 

Recall (NPV) 
 

r= TP+TPFN        (18) 

 

F1-score (F1) 
 

                                      =   +             (19) 
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� �, � = { , if >. , if =        , if <                 
(21) 

The AUC is equivalent to the Mann Wilcoxon test (w) and can   
be computed as:  = =  ∑ ∑ ,��∈�����∈  

(22) 

 = ( > ) +   ( = ) 
(23) 

 

where � �, �  is the score for the probabilistic classifier, and ,  are probability rankings of examples that belong to the 
positive and negative classes, respectively. 

 

1) Machine Learning Algorithms Utilized in this Experiment 

In this section, we provide a brief overview of the main 
machine learning techniques utilized in the present work. 

a) Decision Tree 

A decision tree is a hierarchical subtype of the directed 
acyclic graph (DAG), constructed by performing two steps, 
recursion and partitioning. The tree structure consists of three 
canonical components: a root node, a set of internal nodes, 
and a set of leaf nodes. Each node acts as a processing 
element that acts on a subset of the pattern space, performing 
a logical test on a particular attribute, for which outcomes are 
propagated by outgoing edges [41]. Each successive transfer 
from a parent to a child node is adapted such that the 
homogeneity of the resulting pattern is increased with respect 
to the outcome classes, a property defined as purity. 
Attributes of the highest discriminative power are 
represented in the root node. With lessening power towards 
the leaf nodes, the overall objective is that all leaf nodes will 
be completely pure. 

The main advantage of the decision tree is that the output can 
be easily interpreted, even by non-professionals, as it is 
represented in graphical form [42].Another benefit is in 
handling nominal and numeric parameters; it is the 
nonparametric method in which doesn’t require normalization 
of data. In addition, the decision tree can handle databases that 
have missing and error values. As a consequence ,it could easy 
to incorporate with other classification approaches [42][43]. 

One of the main drawbacks of the decision tree is the 
overfitting phenomenon. As mentioned, the concept of creating 
a decision tree model depends on a split dataset, which leads to 
increasing the number of nodes and  reducing the number of 
training rate errors[44].  

Let  represent a set of training examples relevant to node t 
and Y={ , … , �} is a set of target classes.The tree is 
constructed by spliting the observation feature X into the 

various groups. For continuous features, the tree is  grown up  
based on a set of test conditions and questions with  expected 
results in a terms of binary outcomes {yes, no}. Node t is 
partitioned into two branches as follows: 

 t = {t ∈ :A≤ V}  

={ t ∈ :A>V}  

    (24) 

 

where A is the test condition with outcome V ∈ { , },  t �   
represent the left and right nodes of new tree t.  

To evaluate the best split in feature space, a variety of 
measures have been utilised including Entropy, Gini, and 
classification error defined as follows [44] 

Entropy(t)=∑�−= | lo� |  
 

(25) 

Gini (t)= − ∑ [ | ]�−=  (26) 

Classification error(t)= − max[  | ]  (27) 
 

where |  is the probability of recodes associated with 
class  at a given node t and C is the number of classes. 

b) Neural Networks  

Neural Networks are a problem solving methodology 
grounded in the connectionist paradigm, comprising of 
networks of interconnected elementary units whose adaptive 
parameters maybe tuned to form an emergent solution. In 
particular, neural networks are modelled as a canonicalized 
abstraction of the biological neural networks found in the 
mammalian brain, aiming to capture the information processing 
capability of such structures [45]. In Multilayer Perceptrons 
(MLP), which is a type of feedforward neural network, 
information is transferred forward in one direction without 
cycles. Neurons belonging to layer (i) receive information from 
layer (i-1) and transmit it to layer (i+1), and so on. The input 
units are connected to the output layer through a sequence of 
weighted edges. During the training process, the 
backpropagation algorithm is typically used to compute and 
adjust weights in response to some error signal, given some 
input features [45].  

The neural networks can learn and model the complex 
relationships between features; therefore, it has been used to 
find accurate solutions of complex problems that are difficult to 
solve by humans or through computer technology. Another 
advantage of neural networks is that they can quickly make the 
correct prediction on unseen data. The new data can generalized 
even it has a high degree of noise[46]. 

The main drawback of neural networks is their black box 
nature. It could be hard to understand the features that impact 
the prediction. The interpretability of result could be hard to 
explain. It requires large computational resource. The training 
of the neural network  [46]. 

In our context, behavioral features are used in conjunction 
with demographic features, each corresponding to a node in the 
input layer of the neural network. The output layer contains 
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three nodes which represent each class of student motivation, 
respectively, such that the network can be formally defined as: 

, the set { } =�− , denotes the weight matrix connecting 
layers i and i + 1 for a network of N layers, and, B is the set { } =�− , where Bi denotes the column vector of biases for 
layer i . 

c) Regularized Discriminant Analysis 

Regularized Discriminant Analysis (RDA) is a type of 
Fisher's linear discriminant used in classification problems, 
characterized by high dimensional data and small sample size. 
Shrunken centroids RDA [47] is a generalization of RDA, 
which is capable of eliminating the overfitting of data by setting 
an optimal threshold. Shrunken centroids RDA provides a 
tradeoff between linear discriminant analysis (LDA) and 
quadratic discriminant analysis (QDA). 

 In LDA, a common covariance matrix is assumed for all 
classes, while in QDA, individual covariance matrices are 
assigned to each class. RDA shrinks the individual covariance 
matrix for each class to a common covariance matrix [47]. RDA 
is more appropriate in  classification of high dimensional data 
than LDA. 

The RDA is efficient technique .It can be implemented easily 
since It doesn’t require scale the features and tuning parameters. 
The advantage of logistic regression is that the cost with respect 
to computational complexity is low. It takes a small amount of 
time during the learning process.The critical limitation of 
logistic regression is unable to solve the nonlinear problem 
since it is a generalized linear model [47]. 

 

 2) Second Set of Experimental Results and Discussion 

The empirical results were compared using the performance 
metrics previously described. Each set of analyses were ran five 
times.  Mean average values were yielded over 5 rounds of 
simulations for the F1-Measure, Precision, Recall and AUC. 
Tables 6 and 7 summarize the overall accuracy and kappa 
results, showing the best result of 0.7546 generated by the DT 
network, while the lowest result was achieved by RDA with an 
average value of 0.7372. Table 7 provides an overview of the 
results in further detail. 

 Actual values refer to the ground truth values of each class 
over the test dataset, with predicted values referring to predicted 
classes (motivation category), as obtained from each classifier 
model. For example, the DT model predicts 474 learners as 
intrinsic out of 767 actual values for class “intrinsic”. The 
classifier correctly predicts 501 out of 618  learners as 
belonging to the “amotivation” class. The highest correct 
prediction is reported in the “extrinsic” class, where 544 
learners are correctly classified out of 628.Class “extrinsic” 
yielded the highest precision (true positive ratio), with range 
values of 86%-88% for all classifier models. Class “intrinsic” 
had the highest recall (true negative ratio) for RDA and NN. DT 
provided the best specificity results for Class “amotivation”. 

Table 7 shows that recall is higher than precision across all 
classifiers however, in NN and RDA, precision gives better 
results for class “amotivation” with average values of 86%-
88%. DT achieved strong precision results for the 
“amotivation”  class, yielding  a value of 0.89%. There is no 
noticeable difference between class precision for all models; the 
“amotivation”  “class obtained higher precision than the others  
classes achieving values of 0.88 and 0.86, respectively. 
Conversely, analysis of the “intrinsic” class gives a lower 
precision over all models with average values of 0.50-0.61. 

 We used ROC analysis to select a decision threshold value 
for the true and false positive rates. Figure 6 shows the 
similarity of performance for all classifier models, achieving a 
range of AUC values between 82%-94% across all classes, 
however, DT for class “intrinsic” provided the lowest AUC. As 
indicated in Table 7, the F1-Measure for NN shows slightly 
better results than DT. The lowest F1-Measure is reported for 
class “intrinsic” with a value of 0.6111 in respect to the NN 
model. 

The main reason for DT achieving the highest performance is 
that it employs operations research principles when predicting 
the label class based on decision rules [41]. Moreover, it 
provides an easily accessible representation which may be used 
to understand which features impact on prediction. 

 In our case, we found that the clickstream followed by the 
“ndays_act” features were the most important parameters for 
prediction purposes. The overall results indicate that there is no 
major difference between the accuracy of the neural network 
and Regularized Discriminant Analysis. One possible 
explanation for the neural network’s slightly superior 
performance, in comparison to Regularized Discriminant 
Analysis, is the ability to build internal abstractions to aid in the 
analysis of the complex relationships between the input features 
and the target [48]. The hidden units, in neural networks, create 
a new feature space, which can be used to facilitate class 
discrimination. However, neural networks impede on the 
explain ability of feature contributions. 

 

TABLE 6 
Empirical Result for Classifier Model Accuracy and Kappa 

     

Classifier  Accuracy Kappa 

Decision Tree  0.7546 0.8486 

Neural Networks  0.7376 0.6323 

Regularized 
Discriminant analysis 

 0.7372 0.6092 
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TABLE 7 
Classifier Prediction Performance Results 

              
(a) DT model                                                                                          (b)  NN Model                                                    (c) RDA Model 

Fig. 6. Roc Curves           

Classifier   Actual       

Decision Tree  amotivation  extrinsic    intrinsic     Precision  Recall F1-Measure AUC          

  Predicated  amotivation   

                 extrinsic                       

   intrinsic    

      501          9                      144   

       19          544                   153    

      98         75                     474 

 0.810            

0.866   

0.618           

0.893  
0.8758 

0.861 

0.790  

0.809 

0.670 

0.880 

0.895 

0.739 

  Actual        

Neural Network  amotivation  extrinsic    intrinsic     Precision  Recall F1-Measure AUC          

  Predicated  amotivation   

                 extrinsic    

                 intrinsic    

     544         23                   246 

      13        547                    128 

      59         56                     385 

0.883  

0.873 

 0.507 

0.805  
0.8975 

0.907 

0.761  

0.8321  
0.6111 

0.911  

0.931  

0.824 

  Actual         

Regularized Discriminant  

       Analysis 

amotivation  extrinsic    intrinsic     Precision  Recall F1-Measure AUC          

  Predicated  amotivation   

                 extrinsic   

                 intrinsic    

       532         42          201 

      11          553           167 

      75            33            399 

0.860           

0.880 

0.520 

0.825  

0.871   

0.913                 

  0.763 

  0.813 

  0.626 

  0.915 

  0.946  

  0.829 
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CONCLUSIONS 

The present study conducted two sets of experiments with the 
aims of  providing instructors and course designers with 
information to assist them in enhancing online courses. In the first 
experiment, a set of behavioral features were taken into 
consideration. A descriptive statistical test was used to compare 
successful students versus failing ones; the results demonstrated a 
significant difference between the two groups in terms of 
engagement level. A small number of participants succeed in all 
courses, who use more than half of the learning resources. 
Furthermore, the correlation between participants’ educational 
level and performance was also examined by conducting a Chi-
squared test. The test outcome rejects the null hypothesis and 
indicates the presence of a significant difference in variances 
between the successful and failin groups in terms of engagement 
level. The test results showed that the educational level is a critical 
factor impacting on learner performance. In general, around 40% 
of the participants are educated to either secondary or Bachelors 
degree level.  

In the second set of experiments, machine learning algorithms 
were applied in the prediction of learner motivation in MOOCs 
environments. Three classes of motivation were considered in this 
study, i.e., intrinsic, extrinsic, and amotivation. The best accuracy 
was   achieved using the DT model with a value of 75%, whereas 
the lowest performing classifiers were  NN and RDA, attaining 
values of 72%. Although all classifers  demonstrated 
approximately similar  classification performance, the NN and 
RDA models obcure the interpretation of factors affecting learner 
motivation. Our research indicates that DT is a more suitable 
classifier, achieving a good level of accuracy. In contrast to the 
other models, the decision tree identifies the click stream and the 
number of unique days that learners interact with the course as the 
most important features. Armed with knowledge of the important 
features, course designers may gain richer understanding of 
reasons behind learner motivation within the online course setting. 

In the future, the sentiment analysis can be utilized to discover 
the students' opinions toward the MOOCs. As such, the post-
forum can be used to capture students’ attitude and flag those who 
trend to dropout from course. Different emotional statues can be 
inferred from discussion forums such as frustration, fatigue, and 
boredom. These emotional statues provide the student with 
motivational encouragement and stimulation to facilitate an 
interactive learning environment; including feedback modalities 
such as visually oriented hints. Additionally, the instructor would 
be able to recognize the reasons underpinning student withdrawal 
from the course in a more precise manner. 
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