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Abstract—Reliable and reproducible estimation of vessel 
centrelines and reference surfaces is an important step for the 
assessment of luminal lesions. Conventional methods are 
commonly developed for quantitative analysis of the ‘straight’ 
vessel segments and have limitations in defining the precise 
location of the centreline and the reference lumen surface for both 
the main vessel and the side branches in the vicinity of 
bifurcations. To address this, we propose the estimation of the 
centreline and the reference surface through the registration of an 
elliptical cross sectional tube to the desired constituent vessel in 
each major bifurcation of the arterial tree. The proposed method 
works directly on the mesh domain, thus alleviating the need for 
image upsampling, usually required in conventional volume 
domain approaches. We demonstrate the efficiency and accuracy 
of the method on both synthetic images and coronary CT 
angiograms. Experimental results show that the new method is 
capable of estimating vessel centrelines and reference surfaces 
with a high degree of agreement to those obtained through 
manual delineation. The centreline errors are reduced by an 
average of 62.3% in the regions of the bifurcations, when 
compared to the results of the initial solution obtained through the 
use of mesh contraction method.  

Index Terms—Bifurcation, Centreline Estimation, CTA, 
Coronary Arteries, Elliptic Cross Sections, Shape analysis, 
Tubular Deformable Model. 
 

I. INTRODUCTION 

therosclerosis is a condition where plaques become 
clogged up in the medium and large arteries of the heart, 

which could lead to severe consequences, such as heart attack 
and stroke. Arterial bifurcations, in particular, are prone to 
developing atherosclerotic lesions because of the turbulent 
blood flow and the changing shear stress, which accounts for 
about 20-30% of all percutaneous coronary interventions [1]. 
Hence, there is a need to develop dedicated techniques to 
perform reproducible quantification and report the 
angiographic results for bifurcation lesions.  

Fractional flow reserve (FFR), a technique which measures 
the pressure differences between a stenotic artery and the 
normal segment proximal to the lesion, is considered to be the 
golden standard for the diagnosis of myocardial ischemia in 
clinical practice [2]. However, as it is an invasive procedure, it 
carries a certain amount of risk in terms of morbidity and 
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mortality. Recent advances in CT imaging offer a non-invasive 
alternative for imaging of the coronary artery within one 
breath-holding. CT produces a 3D volumetric image of the 
heart with high spatial and temporal resolutions, which allows 
the construction of patient-specific models of the coronary 
arteries for the assessment of the severity of arterial stenosis 
and potentially the means for evaluation of the functional 
significance of coronary stenoses by carrying out image-based 
haemodynamic analysis of the blood flow in the arteries [3, 4]. 
Despite the significant volume of past and on-going research, 
characterisation of local geometry information in the vicinity of 
a vessel bifurcation, such as estimation of vessel centrelines 
and reference surfaces, remains a changeling task, due to the 
irregular local geometries of the bifurcation. Conventional 
approaches determine the width of the reference vessel by 
linear interpolation of the normal vessel parts before and after 
the bifurcation, however, this does not suffice for 
reconstruction of the reference vessel in 3D. To characterise the 
morphology of the bifurcation, a closed surface representing 
the reference vessel’s boundaries is required, as it would further 
support the choice of treatment and analysis of the geometric 
changes which may occur following coronary intervention [5].   

 
Fig. 1.  The synthetic image illustrates the vessel centrelines defined based on 
the locus of the maximal circles/spheres within the vasculature. It shows that 
the detected centreline (dashed curves) deviates from the manually delineated 
one (shown in blue colour) near the bifurcation region.  

Li and Yezzi [6] modelled the vascular structure as a 4D 
curve (centreline coordinates and vessel radius) and proposed 
the use of a minimal path based method to simultaneously 
detect the vessel surface and determine the centreline between 
two manually selected seed points. Along the same research 
direction, Antiga et al. [7] proposed the extraction of 
centrelines by finding the locus of centres of maximal spheres 
inscribed into the tubular structures based on the Voronoi 
diagram of the object’s surface points. Both methods, however, 
are only able to correctly estimate the centrelines of single 
branch vessels. Inaccurate estimation may occur in the presence 
of multiple branching structures (e.g., vessel bifurcations) as 
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the centreline cannot be precisely defined by using the centre of 
the maximally embedded sphere in the bifurcation area. Fig. 1 
illustrates the problematic centrelines defined in the vicinity of 
a bifurcation using 4D curve based algorithms.   

Deformable model based methods have been widely used in 
modelling of vascular structures. Such methods allow the local 
deformation of a curve (surface) in terms of image features, 
while maintaining global smoothness, usually constrained by 
inherent physical characteristics, such as elasticity and 
stiffness. Wong and Chung [8] proposed a deformable tube 
model based method to recover the healthy shape of abnormal 
vessels in 3D angiography images. In their method, the original 
shape of a diseased vessel segment is reconstructed by 
registering a circular cross sectional tube to the vessel 
boundaries in the normal regions. However, their method is 
sensitive to initialisation, since the widths along the tube are 
determined by linear interpolation between two manually 
selected cross sections. This may lead to under- or 
over-estimation of the area of tube cross sections due to the 
non-linear nature of the vessel, thus resulting in erroneous 
estimation of vessel centrelines and the reference surface. In 
addition, the tube deformation process is carried out in the 
voxel domain, which requires upsampling of the original 
volume to calculate the image-based energy in the case of 
insufficient resolution. However, the choice of the image 
upsampling technique could dramatically affect the magnitude 
of the image-driven energy, leading to non-unique solutions for 
the tube registration problem. Similar work was also reported in 
Kang et al. [9], who proposed the classification of the region of 
interest (ROI) to one of three types, namely, normal, stenotic 
and aneurismal (corresponding to bifurcations), prior to model 
registration. In a departure from previous methods, which 
define vessel cross sections by finding the perpendicular plane 
to the tangent direction of the centreline at each point, they 
propose the determination of vessel cross sections by extracting 
the isosurface from the complementary geodesic distance field, 
which permits the cross sections of the tube to be determined 
uniquely and independently of the fitted centrelines. In this 
method, the classification of the ROI is based on the segmented 
image, which is obtained using a region-growing algorithm. 
The ‘leakage problem’, which is commonly encountered in 
region-growing based segmentation, however, could result in 
erratic classification of the ROI and subsequently degrade the 
performance of the method.   

The current work introduces an automated algorithm for 
simultaneous determination of centrelines and reference 
surfaces in coronary bifurcations. The proposed algorithm is 
based on the concept of deformable tube registration, and offers 
a number of advantages compared to previous approaches. 
Firstly, it works directly on the mesh domain, which alleviates 
the requirement for image upsampling. Secondly, contrary to 
conventional circular cross sectional tube models [8-10], which 
use linear interpolation to determine the width along the tube, 
the proposed method estimates the tubular cross sections based 
on partial information of the vessel surface to be fitted. 
Specifically, the cross sections of the tube are adaptively 
estimated by finding the best fitting ellipse to the intersection 

points (obtained by slicing the vessel surface using a cutting 
plane which is perpendicular to the centreline points) belonging 
to the desired constituent branch of the bifurcation. Thirdly, a 
weighted directional distance metric is employed to measure 
the goodness of the fit between the tube and the vessel of 
interest in the energy calculation, which facilitates tube 
registration at the desired location of the bifurcation. In 
addition, we propose the use of a hybrid optimisation method to 
minimise the tube energy functional. In particular, a local 
greedy search is used to determine the initial solutions for the 
relevant vessel locations, which are then optimised using 
dynamic programming (DP). The proposed optimisation 
strategy ensures the global optimality of the solution, and 
permits the incorporation of hard constraints, posed on the tube 
within a natural and direct framework.  

The remainder of the paper is organised as follows. In 
Section II, we describe the proposed method in detail. This is 
followed by the presentation and analysis of the results, which 
demonstrate the performance of the approach in terms of 
efficiency and accuracy. Finally, Section IV is dedicated to the 
conclusions of the research and a discussion of possible future 
directions.  

II. METHODS 

The purpose of this research is to develop a methodology for 
the extraction of an anatomically valid centreline and the 
determination of the corresponding reference surface in arterial 
bifurcations. It is assumed that the stage of vessel segmentation 
has been previously completed and the segmented vessel 
volume set is available prior to the tube registration. Without 
loss of generality, a binary image volume, with voxels labelled 
to one for vessels and zero for others, is used to represent the 
vessel segmentation. The coronary arteries are extracted using a 
generalised active contours algorithm, described in previous 
work [11]. The binary volume is then converted to its 
equivalent mesh domain by finding the zero-isosurface using 
the marching cube algorithm [12]. The flow chart of the 
proposed approach is shown in Fig. 2. It commences with the 
extraction of the initial centreline location of the arterial trees, 
by using the mesh contraction algorithm [13]. The resulting 
centreline data, C0, are represented by two arrays, holding the 
coordinates of the centreline points (nodes) and the sets of 
indices, which define the adjacent points for each node, 
respectively. Based on the initial centreline (C0), bifurcation 
points are automatically detected by finding the centreline 
nodes with more than two connected neighbours. Next, for each 
constituent vessel of the bifurcation, two endpoints located 
prior and distal to that bifurcation are selected and the 
associated cross sections are determined, respectively. In the 
following step, an initial tube model is constructed by using the 
original centreline and the associated cross sections, where the 
remaining cross sections along the centreline of the tube are 
obtained through linear interpolation between the two 
endpoints. Next, the algorithm alternates between registering 
the tube on the vessel surface and estimating the cross sectional 
shape of the tube, based on the current model. Once the fitting 
process is completed, the central axis of the tube model is 
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considered as the resulting centreline for each of the constituent 
vessel segments of the bifurcation, and the tube surface can be 
used as the reference vessel.  

     

 
Fig. 2.  Flow chart of the proposed framework.   

A. Explicit Vascular Model 

1) Deformable Tube Model: The proposed tube model, 
R(v,θ), is defined in terms of its central axis and the 
corresponding cross sections. The points v= { vi, i=1,…,N} 
represent the path of the N control points (moving nodes), 
where N is adaptively chosen to ensure the distance between 
adjacent moving nodes is less than 0.5 voxels, and θ= {i,, 
i=1,…,N}  is an array consisting of the parameters of the 
associated cross sections. In this research, the cross section of 
the tube model is approximated as the best fitting ellipse. 
Hence, at the i-th moving node vi, the parameter vector is 
defined as θi= { ai,bi,u1i,u2i,φi}, where ai and bi represent the semi 
diameters of the axes of the ellipse, u1i,and u2i 

denote the origin 
of the ellipse, and φi

 
is the tilt angle. The central axis of the tube 

is defined using a B-spline curve with N moving nodes, and the 
surface of the tube can be reconstructed from its circumferences 
(i.e., the cross sections along its centreline) by using the ball 
pivoting algorithm [14]. 

The tube registration problem is solved by minimising a 
generic active contour energy functional, defined as follows: 

                        ConExtInt EEEE                      (1) 

where η and Ȗ are constants, controlling the influence of each 
energy term on the total tube energy. The internal energy, EInt, 
is comprised of the elasticity (v´(s)=dv/ds, where v(s) represents 
the medial axis and s is the arc length parameter) and the 
stiffness of the medial axis (v´´(s)=d2v/ds2): 

                   
s

ssvsv dEInt )|)(''||)('|( 22       (2) 

The constants α and ȕ are the weights for the elasticity and 
stiffness, respectively.  

The external energy functional, EExt, is derived from the 
fitting error between the tube model and the desired vessel 
segment. This poses a strong constraint on the tube based on its 
position with respect to the vessel surface, making the tube 

deform and follow the course of the vessel of interest. In this 
research, we define the external energy of the tube as follows: 

                        sExt dsFE )),(( θsv                        (3) 

where F(v(s),θ) is a scalar function, returning the similarity 
score between the tube model and the desired branch. The 
metric is defined as the weighted directional distance between 
the fitting tube and the vessel surface, which will be discussed 
later on in Section II-B.  

The elastic force defined in the internal energy favours small 
distances between adjacent centreline points, which will 
eventually shrink the curve to a single point. To prevent 
shrinking, an additional constraint, which encourages equal 
spacing between the centreline points, is defined as follows:  

                            
2

))(( ddECon  sv  (4) 

where d(v(s)) denotes the distance between the control point 
v(s) and its successive neighbour along the centreline, and d is 
the average distance between the centreline points. 

 B. Construction of the Reference Surface 

In this research, the reference surface for each constituent 
branch of a bifurcation is constructed through the registration of 
a deformable tube model to the desired branch. In contrast to 
conventional tubular models using fixed cross sections, the 
proposed approach adaptively updates the shape of the tube 
model, thus resulting in a more robust and accurate estimation. 
To this end, the method alternates between updating the cross 
sectional shape of the tube and registering the tube model to the 
desired branch.   

1) Estimation of the Shape of each Cross Section: The 
circular cross sectional tube is the most popular model to 
approximate vascular structures in the literature. Vessels, 
however, are elastic bodies, which can accommodate local 
deformations of the lumen due to changes in blood flow and 
intraluminal pressure within the artery. Such deformations 
cannot be accurately represented using circular cross sections. 
Hence, we use an elliptical cross sectional tube model to 
approximate the vessel surface, which provides sufficient 
degrees of freedom to accommodate the potential deformations 
and facilitates the accurate estimation of the vessel cross 
sections. An ellipse can be defined in parametric form as:  

                             ')( xx Qu                                 (5) 

where,  
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x denotes a point located on the circumference of the ellipse, u 
is the centre of the ellipse, a and b represent the semi-lengths of 
its axes, φ denotes the tilt angle, i.e., the angle between the 
x-axis of the local coordinate system and the major axis of the 
ellipse, and t is an angular parameter varying between 0 to 2π. 
The minimum distance of an arbitrary point, p= [p1, p2]

T, to the 
circumference of the ellipse can be found by:  
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Let Pi=  [(p11, p12), (p21, p22), ..., (pm1, pm2)]
 T,   (m>U, where U≥5 

with the lower value representing the number of free 
parameters of the ellipse) to be the intersection points, found by 
slicing the vessel surface using a perpendicular plane at the 
location of each moving node. The best fit ellipse, for which the 
sum of the squares of the distances to the given points is 
minimum, can be found by solving the following nonlinear 
least squares problem [15]:   
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In order to produce a smooth and anatomically correct 
generalisation of the tube model, we further constrain the area 
of the fitting ellipse, by limiting the lengths of its axes, based on 
its neighbouring slices. Specifically, we restrict the length of 
the axes of the ellipse to lie in the range of [1-c, 1+c] with 
respect to its adjacent cross sections. The constant c (fixed to 
0.2) is determined based on the viscoelastic properties of the 
vessel in [16], where the authors conducted a series of in vitro 
experiments to validate the ability of their CFD model in 
simulating blood flow within the vessel by considering the 
deformation of the vessel wall.  

Let τ= [t1,…, tm, a, b, u1, u2, φ]T denote the unknown 
parameters which need to be determined. By taking into 
consideration the constraints imposed on the axes of the ellipse, 
we set up with the constrained nonlinear least squares problem 
as follows: 
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The subscript i denotes the i-th moving node along the central 
axis of the tube model. 

2) Computation of the Tube Energy: By discretising the 
energy functional defined in (1), the tube energy can be 
rewritten as: 
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Here, vi denotes the moving node of the tube centreline, and the 
external energy is calculated by F(vi,θi), which returns the 
weighted sum of squared errors between the estimated cross 
sections θi and the vessel boundaries intersected by the cross 
section at the location of the moving node vi. Due to the 
irregular geometry of the vessel cross sections at the location of 
the bifurcation, as shown in Fig. 3, not all of the intersection 
points belong to the desired branch, rather a subset of the 
intersection points may belong to another vessel branch. Hence, 
modelling the tube cross sections using all of the intersection 
points may introduce inaccuracies in defining the reference 
vessel surface. To address this issue, we make use of directional 
information to measure the difference between the model and 
the vessel boundaries, where the intersection points belonging 
to the desired vessel surface are assigned higher weights.  

A vessel bifurcation is defined as the subdivision of a vessel 
into two branches. As depicted in Fig. 4(a), it can be considered 
as a single object delineated by a left, middle and right contour, 
respectively [17]. In Fig. 4(b), we extend this concept to 3D 
images, where a bifurcation comprises three surfaces, namely 
the left, middle and right surfaces, respectively. As an example, 
let us consider the vessel segments shown in Fig. 3(a), the 
objective being to fit the tube model to the distal main branch 
(the right branch) over the bifurcation. To this end, the tube 
surface needs to be accurately registered onto the right surface 
of the vessel, as its left counterpart belongs to another 
constituent vessel of the bifurcation. However, it should be 
noted that, the terms ‘left’ and ‘right’ surface are ambiguous in 
3D space, as the definitions of ‘left’ and ‘right’ are relative to 
the viewpoint. In order to correctly register the tube model onto 
the desired surface, we propose a viewpoint-independent 
procedure to determine the surface of interest in an automated 
fashion. As illustrated in Fig. 5, we firstly find the intersection 
curve (Cinter, shown in black) between the vessel surface and the 
intersection plane (i.e., the green plane), defined by the two 
endpoints (PA and PB) together with the bifurcation point (PC), 
in the vicinity of the bifurcation area. Then, the orientation of 
the x-axis of the cross section at PA (denoted by CrossA) 
coincides with the direction of the line segment (shown in red), 
defined as the intersection between the plane CrossA and the 
curve Cinter. Next, we project the endpoint PB onto the plane 
CrossA (denoted by PB´), and the weight distribution is 
subsequently determined based on the sign of the x coordinate 
of the projection point PB´. Specifically, when PB´ is located 
on the left-hand side of plane CrossA, the ‘left’ constituent 
branch is considered as the desired branch, where it is assumed 
that the positive direction of the x-axis of a plane points to the 
‘right’.  Consequently, the intersection points located on the left 
half plane of the cross section are assigned higher weights, and 
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vice versa. In order to deal with the torsion of 3D vessels, the 
technique of rotation minimising frames [18] is employed to 
determine the local reference frame for each point of the 
centreline axis of the tube. Based on the local frame, we define 
the directional weights as: 

                    )
2

)(
exp(

2

1
2

2

2 



w   (11) 

where  is an angular parameter as illustrated in Fig. 6(a), φ is 
the tilt angle of the estimated ellipse at the current cross section, 
and σ indicates the variance of the normal distribution, which is 
chosen to be equal to 60 degrees [(see Fig. 6(b)). The weights 
assigned for fitting the left and right surfaces are shown in Figs. 
6(c) and (d), respectively. 

  

                          (a)                                             (b) 

Fig. 3.  Illustration of the intersection points taken from the vessel 
bifurcation. (a) The 3D view shows the intersection points in the vicinity of the 
vessel bifurcation. (b) The intersected points of (a) shown in a 2D projection 
image. The black dots are the vessel boundary points, while the red dot is the 
position of the centreline point at the cross section. Points on the right side of 
the centreline location are parts of the right surface, and exhibit normal vessel 
shape. Their left hand side counterparts belong to the side branch of the 
bifurcation, and are characterised by an irregular shape. 

   

                          (a)                                        (b) 
Fig. 4.  Representation of the vessel bifurcation in (a) 2D, and (b) 3D, 
respectively. The vessel bifurcation is treated as a single segment delineated by 
three contours/surfaces.  

            

Fig. 5.  Illustration of the proposed scheme for the determination of the 
desired surface. The semi-transparency structure represents the vessel surface. 

The intersection plane, defined by the endpoints PA and PB together with the 
bifurcation point PC, is shown in green. The black curve depicts the 
intersection curve between the plane and the vessel surface near the bifurcation. 
The cross section taken at endpoint PA, denoted by CrossA, is delineated by the 
blue contour, and the red line shows the x-axis direction of the cross section at 
PA.            

 
                       (a)                                             (b) 

  
                       (c)                                             (d) 
Fig. 6.  The directional weights scheme used in the registration of the tube to 
the desired surface in the bifurcation. (a) The definition of the angular 
coordinate system. (b) The weight distribution as a function of the angle, when 
fitting the right hand side surface. (c) and (d) 3D plots of the distribution of 
weights for the left and right surfaces, respectively. The estimated cross section 
is shown in blue and the height of the plot at each point indicates the relative 
magnitude of the weights.  

Given the parameter vector of the cross sectional model 
θi={ai,bi,u1i,u2i,φi}, i.e., the best fit ellipse approximating the 
cross sectional shape of the vessel at the i-th moving node, and 
the directional weights, the goodness of the fit for each cross 
section at the moving node xi can be expressed as: 
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where P = { (pj1, pj2), j=1,...,g}, denote the intersection points as 
defined in the previous section, wj is the weight associated with 
the direction tj, and g denotes the number of points on the 
intersection. 

3) Minimisation of the Tube Energy Functional: Rather than 
minimising the overall energy functional defined in (1), it is 
possible to examine the effect of the moving nodes on the 
model, by minimising the energy functional at each node in 
turn, and allowing the model to move as a whole to fit the vessel 
surface through an iterative process. One way of doing so is 
through the use of a greedy search algorithm. However, the 
optimal locations of the centreline obtained by means of the 
conventional greedy algorithm take place at each moving node, 
without considering the effect of the current node on the total 
energy of the solution. To remedy this issue, we propose the 
incorporation of dynamic programming (DP) into the 
optimisation strategy. For each moving node along the 
centreline, Num suboptimal locations, associated with the 
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lowest energy in the search space, are firstly determined using 
an exhaustive search algorithm [19]. The node energies are 
obtained by the sum of the individual energy functions as 
defined in (10). The search space is defined as a four voxels 
width square grid with a step size of 0.2 voxels, perpendicular 
to the tangential direction of the centreline at each moving 
node. Next, dynamic programming is applied to determine the 
global optimal path of the centreline among all possible paths 
connecting the suboptimal solutions. In this paper, we follow 
the terminology and notation of the work of Amini et al. [20], 
and the tube energy is then expressed as the sum of 
triple-interaction potentials as follows: 
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where 
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In general, dynamic programming is a serial multistage 
decision process, which decomposes a problem as a number of 
single stage processes, connected in series. The solution of the 
dynamic programming involves the determination of a 
sequence of optimal value functions (Si(vi+1,vi),  i=1,...,N) for 
each stage. The optimal value function is defined by two 
adjacent moving nodes on the centreline as: 

          )},,(),({min),( 111111
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where the moving node vi serves as the state variable in the i-th 
decision stage and is only allowed to move on the discrete grid 
within the search space. For fixed values of vi and vi+1, the value 
of the function Si(vi+1,vi) is determined by finding the minimum 
value of the right-hand side of (15), when moving the node vi-1 
over the space of its possible positions. In each decision stage, 
the optimal value function incorporates information from three 
successive moving nodes, and hence, the global optimal 
solution can be obtained recursively in terms of the consecutive 
nodes on the centreline.  

III.  EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we apply our method to both synthetic and 
clinical images to demonstrate the efficiency and accuracy of 
the proposed method in defining the centreline and reference 
vessel surface over the vessel bifurcation. We firstly compare 
the proposed image-driven energy functional with its volume 
domain counterparts, i.e., Wong and Chung’s method [8] and 
the model proposed by Kang et al. [9], to show the benefits 
offered by the proposed energy formulation. The comparison 
was carried out using synthetic 3D vascular images, which 
allow testing these energy metrics on various types of vessel 
segments with known optimal solutions (i.e., ground truth 
data). Next, we validate our method in clinical CTA images and 
compare its performance against the approach reported by 
Antiga et al., in the determination of the centreline location in 

vessel bifurcations.  

A. Experiments on Synthetic Images 

The synthetic tubes were generated using the locus of the 
central axis and associated cross sections (for simplicity, the 
circular cross sectional tube model was used). The tubes were 
represented by a binary volume, in both the mesh and volume 
domains. Fig. 7 illustrates an example of a synthetic tubular 
image.  

Since the purpose of this experiment is to compare the 
performance of the aforementioned image-driven energies in 
measuring the fitness of the tube model at bifurcation areas, the 
central axis of the tube model was initialised using the optimal 
solution for all of the methods. In terms of the associated cross 
sections, they are determined by linear interpolation between 
two ending cross sections, located prior and distal to the 
bifurcation, for both Wong and Chung’s and Kang et al. 
methods. We follow the procedure described in Section II-B to 
estimate the cross sections for the proposed tube model.  

Fig. 8 depicts the change of magnitude of the image-driven 
energies with respect to the distance of the control point from 
the optimal position at the bifurcation area. In this experiment, 
the control point is only allowed to move on a square grid, 
perpendicular to the tube centreline at each control point. The 
radius of the grid was set to three voxels, and the grid size was 
chosen to be 0.2 voxels. Linear interpolation was applied for 
image upsampling in the calculation of the image energies for 
the volume domain methods. It can be seen from Fig. 8 that 
both Wong and Chung’s metric (Fig. 8(a)) and image-based 
energy designed by Kang et al. (Fig. 8(b)) have a flatten region 
near the optimal location. This is due to the fact that both 
image-driven energies are based on the degree of overlapping 
between the tube model and the vessel segment. At a vessel 
bifurcation, the cross section of the vessel, as shown in Fig. 
8(d), deviates from being circular, and thus, the same fitting 
error will be found when the cross section of the tube model is 
located within the interior of the vessel area. In this case, the 
internal energy of the tube model becomes the dominant 
contributor in these two methods in the vicinity of bifurcations, 
and thus, the location of the tube is almost entirely determined 
by this energy term. This may result to erroneous estimation of 
the reference surface and vessel centrelines, since the internal 
energy favours a ‘straight’ tube. On the contrary, only a small 
number of local minima were identified around the optimal 
position in the proposed image-driven energy formulation. As 
shown in Fig. 8(c), our image-driven energy generally 
increases with the distance from the optimal position. 
Therefore, the proposed model is capable of producing accurate 
estimation of vessel centrelines and the reference surface.  

As previously discussed in Section I, image upsampling 
(interpolation) is usually required for the calculation of the 
image-based energy in volume domain methods, when the 
in-plane resolution is insufficient. In Table I, we present a 
comparison of different interpolation methods in the 
calculation of both Wong and Chung’s image-driven energy 
and the external energy proposed by Kang and his Colleagues. 
The experiment was performed on the vessel cross section 
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shown in Fig. 7(b), and the width of the cross section was set to 
its optimal value. It can be observed from Table I that Wong 
and Chung’s image-based energy varies in the range of 0.0043 
to 0.2083, for different interpolation methods. The maximum 
value is almost 50 times greater than the minimum, indicating 
that their method is sensitive to the choice of interpolation 
scheme. In addition, image upsampling is a computationally 
expensive operation with the 3D linear interpolation taking 
approximately 0.4s, while the proposed image energy can be 
calculated within 3ms for the same cross section.  

             
                            (a)                                         (b) 
Fig. 7.  An example illustrating a synthetic tube image. (a) The volume of the 
tube, and (b) An example of the cross sectional image of the tube (at the 
location of the green plane in (a) represented in the voxel domain. Voxels 
labelled as one correspond to the tube while zero is used for the background 
(linear interpolation was applied to increase the resolution).  

   
                         (a)                                            (b) 

     
                         (c)                                            (d) 
Fig. 8.  Calculation of image-based energies near the vessel bifurcation using 
various methods. The change in the magnitude of image energies with respect 
to the distance of the moving node from the optimal solution at the bifurcation 
area, (a) Wong and Chung’s energy, (b) Kang et al. energy, and (c) The 
proposed image energy, (d) A cross sectional image of the vessel taken from the 
bifurcation area. Voxels labelled as one represent the vessel area, and the cross 
section of the tube model is delineated in blue.  

TABLE I 
EFFECT OF INTERPOLATION METHODS ON IMAGE ENERGY 

  Interpolation 
Method 

Wong and Chung’s Energy [8] Kang et al. 
Energy [9] 

Nearest neighbour 0.2083 0.1773 
Linear 0.0727 0.1600 
Cubic 0.0275 0.1629 

Cubic spline 0.0043 0.1501 

B. Experiments on Real Clinical Images 

Eight coronary CT volumes were acquired from St Thomas 
and Guys Hospitals, London, UK. Two were imaged with a 
16-slice CT scanner (Brilliance, Philips), and the remaining six 
volumes were acquired with a Philips ICT-256 workstation. In 
addition, a further four coronary CT studies were obtained from 
a public database [21]. The mean size of the images is 512 ×512 
× 285 with an average in-plane resolution of 0.40 mm × 0.40 
mm, and the mean voxel size in the z-axis is 0.42 mm. For each 
CTA image, four major bifurcations in the main arterial 
branches, i.e., right coronary artery (RCA), left anterior 
descending artery (LAD), left circumflex artery (LCX), and 
one large side branch of the coronaries, were chosen for 
evaluation. The ground truth centrelines were provided by our 
clinical collaborators at St Thomas and Guys’ hospitals. Three 
experts manually and independently annotated the centrelines 
of the CTA data. They were also asked to specify the radius of 
the lumen at the centreline points with a sampling of 3mm. The 
ground truth data (CTR), for which the sum of squares of the 
distances to the experts’ delineations is minimal, was 
determined by solving the associated least square problem. The 
standard deviation of the centreline CTR was found to be 
0.218mm (approximately 0.544 voxels). The tuning parameters 
of the proposed technique were empirically determined from 
the training set, which consisted of three CT studies randomly 
selected from the 12 volumetric datasets. The parameter 
settings are listed in Table II, and were fixed throughout the 
experiments.  

To quantify the accuracy of the fitting results, two distance 
metrics, namely, the Mean Square Error (MSE) between the 
ground truth centreline data and the central axis of the fitting 
tube, and the MSE between the fitting tube surface and the 
vessel boundaries, are used to validate the performance of the 
algorithms. 

TABLE II  
PARAMETER SETTINGS FOR THE PROPOSED METHOD 

Maximum number of iterations, iter 20 
Number of suboptimal solutions for each node, Num 10 
Elasticity weight, α 0.2 
Stiffness weight, ȕ 0.2 
Constrained energy weight, Ȗ 0.15 
Appearance energy weight, η 1 
Axis constraint, c 0.2 
Radius of the search space, rad 4 
Grid size of the search space, ds 0.2 
Maximum number of iterations, emax  100 
Stopping criterion, eps 10-6 
Circularity criterion for selection of endpoints, comp 0.9 

 
Clearly, the choice of parameters in the proposed method can 

influence the performance. For instance, the elasticity weight α 
controls the degree of stretching (length) of the centreline. 
Small values of α could increase the resistance of the centreline 
curve, while large values may result in shortening of the 
centreline. The effect of the centreline smoothness (stiffness) 
parameter ȕ is illustrated in Fig. 9, when ȕ is set to relatively 
small values. The image based energy term dominates the tube 
fitting process, thus leading to a jagged tube centreline (see Fig. 
9(a)). Conversely, when ȕ takes large values, the smoothness 
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constraint becomes the major contributor to the total energy, 
thus resulting in a ‘straight’ tube, as shown in Fig. 9(b).   

The search space of the proposed method is defined as a 
square grid, given by the window’s radius (rad) and the step 
size (ds), centred at each moving point along the centreline. We 
use the vessel segment of Fig. 3(a) to evaluate the performance 
of the tube fitting process with respect to the rad and ds 
parameters. It can be seen in Fig. 10(a) that the results change 
dramatically as the search space step ds increases. This is 
because a small step size for the search space (i.e, finer 
resolution) allows a larger number of alternative locations for 
the node to move and thus improves the overall performance. 
Large values for the step size (i.e., coarser resolution), however, 
may result in the node making large and potentially erratic 
movements On the other hand, the influence of parameter rad, 
as shown in Fig. 10(b), is not as significant, since the minimum 
value of the local energy for each node is usually found within a 
small distance from its initial position. In theory, the choice of 
parameter rad should not introduce significant changes on the 
results. However, this parameter still needs to be chosen at the 
appropriate scale, with the optimal value being the width of the 
vessel, at the vessel bifurcation. The reason for this is that a 
large value for the parameter rad can increase the probability 
for an erroneous movement of the centreline and subsequently 
increase the computational cost of the optimisation procedure. 
Since the initial centreline is already near the optimal position, 
we set the radius of the search space to four voxels in order to 
improve the efficiency of the proposed algorithm.  

 

                                                     
(a)                                           (b) 

Fig. 9.  The tube centreline obtained by using extreme values for the weights 
of the smoothness constraints. The tube centrelines obtained by using the 
standard parameter settings, listed in Table II, are shown in red. The black 
curves are the centrelines obtained with (a) low, and (b) high weights for the 
smoothness (stiffness) parameter ȕ.  

 
(a)                                              (b) 

Fig. 10.  Comparison of the tube fitting results in terms of the centreline and 
surface fitting errors. Plots (a) and (b) correspond to the influence of parameters 
ds and rad, respectively. The centreline fitting error is depicted with the dashed 
line, while the surface fitting error is illustrated by solid lines.  

Fig. 11 illustrates the results obtained from the application of 

the proposed method on four clinical datasets, where the 
semi-transparent structures (shown in blue) are the arterial 
lumen surfaces, obtained from the vessel segmentation, and the 
initial centrelines (C0) are shown in blue. The central axis of the 
fitting tube is delineated in red, while the corresponding surface 
is represented in black. Fig. 11(a) shows the fitting of the 
proposed tube model on the main vessel in the bifurcation. Fig. 
11(b) illustrates the registration of the fitting tube onto a highly 
curved side branch. Fig. 11(c) depicts the result obtained in the 
neighbourhood of a complex bifurcation, while the ability of 
our method in fitting a tapering vessel is demonstrated in Fig. 
11(d).  

 

      
(a)                                          (b) 

       
                     (c)                                          (d) 
Fig. 11.  Tube registration/fitting results obtained from major bifurcations of 
coronary arteries: (a) Main vessel in a bifurcation (b) A highly curved side 
branch, (c) A complex bifurcation and and (d) A tapering vessel. The semi 
transparent structure represents the vessel surface (blue surface). The fitting 
tube is represented by its central axis (in red) and the outer surface (in black) 
reconstructed from the cross sections. The blue line denotes the initial 
centreline estimations.  

Fig. 12 depicts the correlation between the tube energy (blue 
colour) and the MSE of the fitted centrelines (red colour) with 
varying parameter settings. Parameter rad is fixed to the 
standard value since it has little influence on the fitting results. 
We assume that parameters α and ȕ have equal values and 
evaluate their effect when they take the values of {0.05, 0.2, 
0.5}. The grid size parameter takes the values of {0.1, 0.5, 1}, 
while the remaining parameters are set to their standard values. 
Note that to facilitate comparison, the values of the MSE and 
the tube energy were normalised between 0 and 1. By observing 
the results of Fig. 12, we can see that there is a high degree of 
correlation between the MSE of the centreline and the total tube 
energy, apart from the cases of Figs. 12 (c), (f), (h) and (i). This 
is because the combination of high smoothness constraints and 
large search space step size imposes a limit on the possible 
locations of the tube centreline. Nevertheless, the results 
provide sufficient evidence that for an appropriate choice of 
parameters, minimisation of the energy functional of the entire 
tube is equivalent to minimisation of the MSE of the fitting 
tube, and thus, it is reasonable to terminate the tube registration 
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process, when the tube energy stops decreasing.   

 
Fig. 12.  Correlation between the tube energy and the MSE of the centreline for 
different parameter settings. The x-axis of the plot corresponds to the number of 
iterations, while the y-axis corresponds to the normalised MSE and tube energy 
values. The tube energy and MSE are plotted in blue and red colours, 
respectively. Plots (a)-(c) show the MSE and tube energy with parameters 
rad=2, α=ȕ=0.05, ds={0.1, 0.5, 1}, respectively, plots (d)-(f) for rad=2, 
α=ȕ=0.2, ds={0.1, 0.5, 1}, and plots (g)-(f) for parameters rad=2, α=ȕ=0.5, 
ds={0.1, 0.5, 1},  respectively.  

We also compared the performance of the proposed method 
using two tube models, i.e., both circular and elliptical cross 
sectional tubes, with the centreline extraction algorithm 
reported by Antiga et al. [7], in the determination of vessel 
centrelines near bifurcations. For the circular cross sectional 
model, we initialise the tube in a similar way as in Wong and 
Chung’s method, where the central axis of the tube is defined as 
the initial centreline of the arteries and the corresponding width 
of the cross sections along the centreline is determined by linear 
interpolation between the diameters estimated at the two 
endpoints. The tuning parameters for the circular cross 
sectional tube were determined in the case of the elliptical tube, 
with the help of the same training set. The VMTK toolkit [22] 
was used to perform the centreline extraction algorithm in [7], 
and 3D slicer [23] was employed to interactively select the end 
points for each vessel segment. 

As can be observed in Fig. 13, the average MSE of the initial 
centrelines (C0) near the bifurcation is approximately 1.71 
voxels. The error can be reduced by 36% on average with the 
use of the method proposed in [7] (the MSE was found at 1.05 
voxels). For the proposed algorithm, the circular cross sectional 
tube has a similar performance to Antiga et al. method, where 
the mean MSE across the test datasets was 0.92 voxels. A 
further improvement in performance is achieved (i.e., the MSE 
is reduced by 62.3 % on average compared with the initial 
centrelines), when using the elliptical cross section tube model. 
The box and whisker plots of the centreline fitting errors of 
these models for the eight datasets are presented in Fig. 14. It 
can be seen that the dispersion of the centreline fitting errors 
when using the elliptical cross section tube model is the least. 
This indicates that the proposed elliptical cross section tube 

model has a higher degree of reproducibility and is more 
insensitive to the characteristics of the input datasets. The 
maximum fitting error of our method, when using the elliptical 
cross section tube model, was found to be equal to 0.86 voxels, 
which implies that the proposed model is able to estimate the 
locations of the centrelines over the region of the bifurcation 
with sub-voxel accuracy.  Note that datasets #1-#3 were used as 
the training set for tuning parameters for all the methods. 

 

 
Fig. 13.  Comparison of the centrelines extracted at the vicinity of the 
bifurcations using various methods.  

 
Fig. 14.  Centreline fitting errors for the clinical datasets obtained using the 
various models. 

The proposed approach was implemented in MATLAB 
(R2010b) on a standard specification PC (Dell Precision 
T3500, Inter(R) Xeon(R) CPU at 2.67GHz), and the average 
execution time was found to be 61.3 seconds for fitting each 
constituent branch of a bifurcation. VMTK, on the other hand, 
requires roughly 100s to carry out the same process (when 
implemented using 3D slicer). 

IV.  CONCLUSIONS 

In this research, a novel deformable tube model based 
method was proposed to determine the vessel centreline and the 
associated reference vessel in the area of bifurcations. 
Compared to state-of-the-art algorithms, which determine the 
width of the tube in a fixed fashion, the proposed method is 
robust to initialisation, even when the initial cross section radii 
are over- or under-estimated at the end cross sections. This is 
achieved by dynamically updating the cross sectional shape 
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during the registration process. The proposed model directly 
works on the mesh domain, which eliminates the need for 
image upsampling, normally encountered in conventional 
volume domain based methods, in the case of insufficient 
image resolution. Furthermore, we propose the application of a 
hybrid optimisation scheme, combining greedy search and 
dynamic programming, to solve the tube registration problem, 
which guarantees the global optimality of the solution and 
allows the enforcement of hard constraints in a natural manner. 

The efficiency of our method was demonstrated on both 
synthetic and clinical datasets, with encouraging results. 
Experiments on synthetic tube images have shown that the 
proposed image-driven energy is more efficient and accurate in 
measuring the fitness of the tube model at bifurcation areas. For 
the real clinical data, the proposed method can produce smooth 
and morphologically correct centrelines and reference surfaces 
for both the main vessel and the side branch in the region of a 
bifurcation. The fitting results show that the proposed method 
leads to an improvement of 62.3% in accuracy (on average), 
when compared to the initial centreline locations, obtained 
through the use of mesh contraction algorithm. The application 
of the proposed tube model allows for the local geometric 
parameters of vessel bifurcations to be easily and robustly 
estimated, which in turn can be used as a starting point for 
further clinically relevant research. For instance, prediction of 
the optimal size of a stent is important in intervention treatment, 
and requires reliable measurement of the centreline length and 
the distal cross sectional diameters of the vessel segment [24]. 
Experimental results have shown that vessel centrelines 
obtained through the proposed technique have a high degree of 
agreement with the manually delineated ground truth data in the 
vicinity of bifurcations. Hence, the proposed technique may 
potentially facilitate for a more accurate prediction of the size 
of stent. In addition, the proposed system is fully automatic, 
which supports the estimation of bifurcation geometries with 
minimal user interaction. Finally, the outputs of this work may 
be particularly useful in the study of the relationship between 
local geometries and the associated risk of developing arterial 
lesions by carrying out patent-specific haemodynamic analysis 
of the blood flow in the artery [25].    
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