20 research outputs found

    Operationalizing local ecological knowledge in climate change research : challenges and opportunities of citizen science

    Get PDF
    Current research on the local impacts of climate change is based on contrasting results from the simulation of historical trends in climatic variables produced with global models against climate data from independent observations. To date, these observations have mostly consisted of weather data from standardized meteorological stations. Given that the spatial distribution of weather stations is patchy, climate scientists have called for the exploration of new data sources. Knowledge developed by Indigenous Peoples and local communities with a long history of interaction with their environment has been proposed as a data source with untapped potential to contribute to our understanding of the local impacts of climate change. In this chapter, we discuss an approach that aims to bring insights from local knowledge systems to climate change research. First, we present a number of theoretical arguments that give support to the idea that local knowledge systems can contribute in original ways to the endeavors of climate change research. Then, we explore the potential of using information and communication technologies to gather and share local knowledge of climate change impacts. We do so through the examination of a citizen science initiative aiming to collect local indicators of climate change impacts: the LICCI project (www.licci.eu). Our findings illustrate that citizen science can inspire new approaches to articulate the inclusion of local knowledge systems in climate change research. However, this requires outlining careful approaches, with high ethical standards, toward knowledge validation and recognizing that there are aspects of local ecological knowledge that are incommensurable with scientific knowledge

    El Niño Southern Oscillation (ENSO) and global warming

    No full text
    It is widely accepted by the international scientific community that human activities have increased atmospheric concentrations of greenhouse gases (GHG) and aerosols since the pre-industrial era. This increase has contributed to most of the warming (0.6±0.2°C) observed over the 20th century, land areas warming more than the oceans, with the 1990s very likely to be the warmest decade of the 20th century (IPCC, 2001). How this warming influences the occurrence, severity and frequency of ENSO episodes remains highly uncertain. The IPCC (2001) assessment of the scientific literature found insufficient evidence to suggest any direct attribution between increase in ENSO events that occurred in the last 20 to 30 years of the 20th century and global warming (IPCC, 2001). However, assessments carried out since then (e.g. IPCC Fourth Assessment Report (AR4), in preparations) suggest El Niño events have become more frequent, persistent and intense during the last 20 to 30 years compared to the previous 100 years. Attribution to global warming, however, remains highly uncertain. Efforts to simulate and model past, present and future behaviour of ENSO under a warming world due to enhanced GHG concentrations produce conflicting results. Since substantial internally-generated variability of ENSO behaviour on multi-decadal to century timescales occurs in long, unforced atmospheric-oceanic general circulation model (AOGCM) simulations, the attribution of past and future changes in ENSO amplitude and frequency to external forcing like GHG concentrations cannot be made with certainty. Such attribution would require extensive use of ensemble climate experiments or long experiments with stabilised GHG forcing. Although there are now better ENSO simulations in AOGCM, further model improvements are needed to simulate a more realistic Pacific climatology and seasonal cycle of the key modes influencing the climate of the region, as well as more realistic ENSO variability. More research is needed to further enhance scientific understanding of possible teleconnections between ENSO and global warming. It is worth noting the IPCC AR4 due to be release in September 2007, would provide a more detailed assessment of ENSO and global warming than what is being covered in this paper

    Governing net zero carbon removals to avoid entrenching inequities

    Get PDF
    Climate change embeds inequities and risks reinforcing these in policies for climate change remediation. In particular, with policies designed to achieve “net zero” carbon dioxide, offsets may be considered inequitable if seen to avoid or delay gross emission reductions; offsets to emissions through technologically mature methods of carbon dioxide removals (CDR) require natural resources at scales threatening food security; knowledge of the potential of immature CDR is largely a global north monopoly; and CDR in particular environments is ill-understood and its implications for development unexamined. The use of CDR to contribute to robust progress toward Paris climate goals requires global agreement on simultaneously reducing emissions and enhancing removals, equity in burden sharing, and an interdisciplinary effort led by individual jurisdictions and focused on the co-development of technologies and governance to create CDR portfolios matched to local needs

    Ethics, conservation and climate change

    No full text
    While the projected impacts of climate change on cultural heritage are beginning to be considered with increased urgency by cultural heritage professionals, government agencies and funding bodies are still failing to grasp the larger ramifications for society in regard to how this relates to social equity and local and national community identities. Funding allocations for climate change by national and international authorities have generally overlooked cultural heritage. As a result there is a lack of 'hard' data on existing impacts nor is there investment in the development of feasible mitigation measures. Why does this matter? Has society, and in particular government authorities and funding bodies, failed to grasp the intimate connection between cultural heritage and sustainable communities? While attention is focussed elsewhere, what do local communities stand to lose? And why is this important? If the impact of climate change on cultural heritage continues to be poorly understood, insufficiently audited and mitigation strategies underdeveloped, it is likely that responses to long- and short-term climate-induced impacts will be ad hoc. Who then will make decisions about what is significant and what should be saved, and what are the potential risks for cultural heritage and communities? The authors explore these questions through case studies from Central Asia, the Arctic and Australia
    corecore