283 research outputs found

    Back pressure effects on variable geometry turbine performances

    Get PDF
    Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.Turbochargers are widely used in applications to increase specific power and decrease fuel consumption. However, recent anti-pollution regulations have became stricter and pressed automotive engineers to find new solutions to reduce Nox emissions. Two of these solutions are the catalytic converter and the intercooler system. All these modifications will change the initial matching of the turbocharger performance characteristics to the engine requirements. In this paper, several compressor wheel sizes are investigated to evaluate the turbine/compressor matching. The intercooler and catalytic converter back pressure induced are respectively modeled by a lower duct section downstream the compressor stage and a variable valve downstream the turbine stage. The influences of the different modifications are identified through the loading and the flow coefficients and also on classical turbine performance maps. First, an analogy between compressor wheel size and back pressure effects is underlined. Second, it is shown that initial control settings of turbine nozzle vanes are no longer appropriate with a catalytic converter.vk201

    Multiorgan failure after sickle cell vaso occlusive attack: integrated clinical and biological emergency

    Get PDF
    We describe the case of a 30-year-old patient, suffering from composite S/beta + sickle cell disease. He was hospitalized following a vaso-occlusive attack with acute bone pains. Despite an analgesic treatment and transfusion of three units of red blood cells, a non-regenerative anemia appeared within 24 hours. One day later an acute chest syndrome with atelectasis of the left lung and desaturation and multi-organ failure occurred and necessitated the patient\u27s intubation and required him to be placed in an artificial coma. A bronchoalveolar lavage was performed, which eliminated pneumonia but proved, after staining with oil red O, many neutral fatty acid microvacuoles in more than 80% of macrophages, suggesting a pulmonary fat embolism. The hypothesis of a bone marrow necrosis causing a pulmonary fat embolism was discussed and confirmed the next day by the characteristic appearance of the bone marrow. A therapeutic protocol associating iteratively bleeding and red blood cells transfusion was administered on the second day with the objective of maintaining haemoglobin S at less than 20% rate. Successive haemoglobin S assay was applied using a high performance liquid chromatography (HPLC) technique with a quick response within one hour after transfusion or bleeding. This protocol resulted in an improvement in the patient\u27s condition, with a gradual normalization of vital signs and extubation twelve days later and discharge without sequelae twenty-five days later. The succession of rare but serious sickle cell complications anaemia which occurred in this patient could be controlled by adapting the laboratory for the clinical emergency

    Spin configurations in Co2FeAl0.4Si0.6 Heusler alloy thin film elements

    Full text link
    We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong influence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures.Comment: 4 pages, 4 figure

    Magnetic switching in granular FePt layers promoted by near-field laser enhancement

    Full text link
    Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between "up" and "down" magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer

    Emergent dynamic chirality in a thermally driven artificial spin ratchet

    Get PDF
    Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells

    Optical control of 4f orbital state in rare-earth metals

    Full text link
    Information technology demands continuous increase of data-storage density. In high-density magnetic recording media, the large magneto-crystalline anisotropy (MCA) stabilizes the stored information against decay through thermal fluctuations. In the latest generation storage media, MCA is so large that magnetic order needs to be transiently destroyed by heat to enable bit writing. Here we show an alternative approach to control high-anisotropy magnets: With ultrashort laser pulses the anisotropy itself can be manipulated via electronic state excitations. In rare-earth materials like terbium metal, magnetic moment and high MCA both originate from the 4f electronic state. Following infrared laser excitation 5d-4f electron-electron scattering processes lead to selective orbital excitations that change the 4f orbital occupation and significantly alter the MCA. Besides these excitations within the 4f multiplet, 5d-4f electron transfer causes a transient change of the 4f occupation number, which, too, strongly alters the MCA. Such MCA change cannot be achieved by heating: The material would rather be damaged than the 4f configuration modified. Our results show a way to overcome this limitation for a new type of efficient magnetic storage medium. Besides potential technological relevance, the observation of MCA-changing excitations also has implications for a general understanding of magnetic dynamics processes on ultrashort time scales, where the 4f electronic state affects the angular momentum transfer between spin system and lattice.Comment: Manuscript (14 pages, 3 figures) and Supplementary Information (22 pages, 9 figures
    corecore