41 research outputs found
How does exposure to pesticides vary in space and time for residents living near to treated orchards?
This study investigated changes over 25 years (1987-2012) in pesticide usage in orchards in England and Wales and associated changes to exposure and risk for resident pregnant women living 100 and 1000 m downwind of treated areas. A model was developed to estimate aggregated daily exposure to pesticides via inhaled vapour and indirect dermal contact with contaminated ground, whilst risk was expressed as a hazard quotient (HQ) for reproductive and/or developmental endpoints. Results show the largest changes occurred between 1987 and 1996 with total pesticide usage reduced by ca. 25%, exposure per unit of pesticide applied slightly increased, and a reduction in risk per unit exposure by factors of 1.4 to 5. Thereafter, there were no consistent changes in use between 1996 and 2012, with an increase in number of applications to each crop balanced by a decrease in average application rate. Exposure per unit of pesticide applied decreased consistently over this period such that values in 2012 for this metric were 48-65% of those in 1987, and there were further smaller decreases in risk per unit exposure. All aggregated hazard quotients were two to three orders of magnitude smaller than one, despite the inherent simplifications of assuming co-occurrence of exposure to all pesticides and additivity of effects. Hazard quotients at 1000 m were 5 to 30 times smaller than those at 100 m. There were clear signals of the impact of regulatory intervention in improving the fate and hazard profiles of pesticides over the period investigated
Three component Kabachnik-Fields condensation leading to substituted aminomethane-P-hydroxymethylphosphonic acids as atool for screening of bacterial urease inhibitors
Condensation of hydroxyalkane-H-phosphinic acids, formaldehyde and secondary amines has given entry to the synthesis of variously substituted aminomethane-P-hydroxymethylphosphinic acids. The proposed strategy allowed to perform a feasible synthesis of several molecules with designed biological activity towards bacterial urease - an enzyme which is a medicinally relevant molecular target. The inhibitory potency of compounds was validated using enzyme purified from Bacillus pasteurii. © ARKAT-USA, Inc
Design, synthesis, and evaluation of novel organophosphorus inhibitors of bacterial ureases
A new group of organophosphorus inhibitors of urease, P-methyl phosphinic acids was discovered by using the structure based inhibitor design approach. Several derivatives of the lead compound, aminomethyl(P-methyl)phosphinic acid, were synthesized successfully. Their potency was evaluated in vitro against urease from Bacillus pasteurii and Proteus vulgaris. The studied compounds constitute a group of competitive, reversible inhibitors of bacterial ureases. Obtained thiophosphinic analogues of the most effective structures exhibited kinetic characteristics of potent, slow binding urease inhibitors, with K i = 170 nM (against B. pasteurii enzyme) for the most active N-(N′-benzyloxycarbonylglycyl)aminomethyl(P-methyl)phosphinothioic acid. © 2008 American Chemical Society
Computer-aided optimization of phosphinic inhibitors of bacterial ureases
Urease inhibitors can be considered as a tool to control the damaging effect of ureolytic bacteria infections in humans which occur commonly in the developed countries. Computer-aided optimization of the aminomethylphosphinate structures by modifying both their N- and P-termini led to the invention of a novel group of inhibitors of bacterial ureases. Introduction of P-hydroxymethyl group into the molecule resulted in considerable increase of the inhibitory activity against enzymes purified from Bacillus pasteurii and Proteus vulgaris as compared with their P-methyl counterparts described previously. The designed compounds represent a competitive reversible class of urease inhibitors. The most potent, N-methyl-aminomethyl-P-hydroxymethylphosphinic acid, displayed Ki = 360 nM against P. vulgaris enzyme. © 2010 American Chemical Society
The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design
Urease, the enzyme that catalyses the hydrolysis of urea, is a virulence factor for a large number of ureolytic bacterial human pathogens. The increasing resistance of these pathogens to common antibiotics as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications has stimulated the development of novel classes of molecules that target urease as enzyme inhibitors. We report on the crystal structure at 1.50-Å resolution of a complex formed between citrate and urease from Sporosarcina pasteurii, a widespread and highly ureolytic soil bacterium. The fit of the ligand to the active site involves stabilizing interactions, such as a carboxylate group that binds the nickel ions at the active site and several hydrogen bonds with the surrounding residues. The citrate ligand has a significantly extended structure compared with previously reported ligands co-crystallized with urease and thus represents a unique and promising scaffold for the design of new, highly active, stable, selective inhibitors