59 research outputs found
The influence of CeF3 on radiation hardness and luminescence properties of Gd2O3-B2O3 glass scintillator
The effect of CeF3 concentration and γ-irradiation on the physical, optical and luminescence properties of Gd2O3-B2O3-CeF3 glasses were studied in this work. Before irradiation, the addition of CeF3 in glass degraded the network connectivity observed from FTIR and possibly created the non-bridging oxygen (NBO) in glass structure. This NBO caused the reduction of Ce3+/Ce4+ ratio in XANES, the red-shift in transmission spectra and the raise of refractive index with addition of CeF3 content. Such red-shift also was influenced by 4f-5d transition of Ce3+ dopant. This ion generated the strongest photoluminescence (PL) and radioluminescence (RL) in 0.3 mol% CeF3-doped glass with nanoseconds decay time. The irradiation with γ-rays damaged the glass structure, broke the chemical bonds, and created color center in the glass network. The non-bridging oxygen hole center (NBOHC), that absorbed photons in the visible light region, caused the darkening, color change and increment of refractive index. These irradiation effects on glass were mitigated by the addition of CeF3 that the electron donation of Ce3+ decreased the number of NBOHC. The Ce3+/Ce4+ ratio in most glasses after irradiation then reduced compared to them before irradiation, resulting to the decrease in PL and RL intensity. Our results confirm that CeF3 can enhance the radiation hardness of glass and the 0.3 mol% CeF3-doped glass is a promising glass scintillator.fals
The influence of CeF₃ on radiation hardness and luminescence properties of Gd₂O₃–B₂O₃ glass scintillator
The effect of CeF3 concentration and γ-irradiation on the physical, optical and luminescence properties of Gd2O3–B2O3–CeF3 glasses were studied in this work. Before irradiation, the addition of CeF3 in glass degraded the network connectivity observed from FTIR and possibly created the non-bridging oxygen (NBO) in glass structure. This NBO caused the reduction of Ce3+/Ce4+ ratio in XANES, the red-shift in transmission spectra and the raise of refractive index with addition of CeF3 content. Such red-shift also was influenced by 4f–5d transition of Ce3+ dopant. This ion generated the strongest photoluminescence (PL) and radioluminescence (RL) in 0.3 mol% CeF3-doped glass with nanoseconds decay time. The irradiation with γ-rays damaged the glass structure, broke the chemical bonds, and created color center in the glass network. The non-bridging oxygen hole center (NBOHC), that absorbed photons in the visible light region, caused the darkening, color change and increment of refractive index. These irradiation effects on glass were mitigated by the addition of CeF3 that the electron donation of Ce3+ decreased the number of NBOHC. The Ce3+/Ce4+ ratio in most glasses after irradiation then reduced compared to them before irradiation, resulting to the decrease in PL and RL intensity. Our results confirm that CeF3 can enhance the radiation hardness of glass and the 0.3 mol% CeF3-doped glass is a promising glass scintillator.Kaewnuam E., Wantana N., Ruangtaweep Y., et al. The influence of CeF₃ on radiation hardness and luminescence properties of Gd₂O₃–B₂O₃ glass scintillator. Scientific Reports 12, 11059 (2022); https://doi.org/10.1038/s41598-022-14833-3
Identification of Barium-Site Substitution of BiFeO3-Bi0.5K0.5TiO3 Multiferroic Ceramics: X-ray Absorption Near Edge Spectroscopy
In this work, the effects of barium substitution on the local structure, dielectric and magnetic properties of the polycrystalline ceramics 0.6BiFeO3–0.4(Bi0.5K0.5)TiO3 (0.6BFO–0.4BKT) system was investigated. A solid-state reaction technique was used to synthesize the materials with barium (Ba) doping of 1, 3, 5, 7, and 10 mol%. XRD analysis reveals the coexistence between tetragonal and rhombohedral phases of single-phase perovskite in pure 0.6BFO–0.4BKT and the rhombohedral reach phase was found with increasing Ba content. XANES simulations indicate that the majority of Ba atoms occupy A-site in BKT lattice of Ba-doped 0.6BFO-0.4BKT, the oxidation state of Fe, Ti, and Ba ions are +3, +4 and +2, respectively. At 5 mol% of Ba doping content, the dielectric measurement shows the morphotropic phase boundary (MPB) and the maximum value of ferromagnetic characteristic were observed, indicating an optimum composition, properties and production conditions
Role of Adsorption Phenomena in Cubic Tricalcium Aluminate Dissolution
The workability of
fresh Portland cement (PC) concrete critically
depends on the reaction of the cubic tricalcium aluminate (C<sub>3</sub>A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling
mechanism is poorly understood. In this article, the role of adsorption
phenomena in C<sub>3</sub>A dissolution in aqueous Ca-, S-, and polynaphthalene
sulfonate (PNS)-containing solutions is analyzed. The zeta potential
and pH results are consistent with the isoelectric point of C<sub>3</sub>A occurring at pH ∼12 and do not show an inversion
of its electric double layer potential as a function of S or Ca concentration,
and PNS adsorbs onto C<sub>3</sub>A, reducing its zeta potential to
negative values at pH >12. The S and Ca <i>K</i>-edge
X-ray
absorption spectroscopy (XAS) data obtained do not indicate the structural
incorporation or specific adsorption of SO<sub>4</sub><sup>2–</sup> on the partially dissolved C<sub>3</sub>A solids analyzed. Together
with supporting X-ray ptychography and scanning electron microscopy
results, a model for C<sub>3</sub>A dissolution inhibition in hydrated
PC systems is proposed whereby the formation of an Al-rich leached
layer and the complexation of Ca–S ion pairs onto this leached
layer provide the key inhibiting effect(s). This model reconciles
the results obtained here with the existing literature, including
the inhibiting action of macromolecules such as PNS and polyphosphonic
acids upon C<sub>3</sub>A dissolution. Therefore, this article advances
the understanding of the rate-controlling mechanism in hydrated C<sub>3</sub>A and thus PC systems, which is important to better controlling
the workability of fresh PC concrete
An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox
Authors acknowledge financial support from the National Natural Science Foundation of China (51822210), the Australian Research Council (ARC) for its support through Discover Project (DP 140100193),Shenzhen Peacock Plan (KQJSCX20170331161244761), the Program for Guangdong Innovative and Entrepreneurial Teams (No. 2017ZT07C341), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline.The growing demand for advanced lithium-ion batteries calls for the continued development of high-performance positive electrode materials. Polyoxyanion compounds are receiving considerable interest as alternative cathodes to conventional oxides due to their advantages in cost, safety and environmental friendliness. However, polyanionic cathodes reported so far rely heavily upon transition-metal redox reactions for lithium transfer. Here we show a polyanionic insertion material, Li2Fe(C2O4)2, in which in addition to iron redox activity, the oxalate group itself also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution. The current study gives oxalate a role as a family of cathode materials and suggests a direction for the identification and design of electrode materials with polyanionic frameworks.Publisher PDFPeer reviewe
A Structural Study of Praseodymium Gallate Glasses by Combined Neutron Diffraction, Molecular Dynamics and EXAFS techniques
A structural study of praseodymium gallate glasses by combined neutron diffraction, molecular dynamics and EXAFS techniques
Stabilization of the morphotropic phase boundary in (1−x)BNT-xBCTS ceramics prepared by the solid-state combustion technique
Crystal structure and magnetoelectric properties of CrFeO3-doped BaZr0.1Ti0.9O3 multiferroic ceramics
- …
