156 research outputs found

    Aligning ecology and markets in the forest carbon cycle

    Get PDF
    A forest carbon (C) offset is a quantifiable unit of C that is commonly developed at the local or regional project scale and is designed to counterbalance anthropogenic C emissions by sequestering C in trees. In cap-and-trade programs, forest offsets have market value if the sequestered C is additional (more than would have occurred in the absence of the project) and permanent (sequestered within the project boundary for a specified period of time). Local management and ecological context determine the rate of C sequestration, risk of loss, and hence the market value. An understanding of global C dynamics can inform policy but may not be able to effectively price an ecosystem service, such as C sequestration. Appropriate pricing requires the assistance of ecologists to assess C stock abundance and stability over spatial and temporal scales appropriate for the regional market. We use the risk that sequestered C will be emitted as a result of wildfire (reversal risk) to show how ecological context can influence market valuation in offset programs

    The QUEST large area CCD camera

    Get PDF
    We have designed, constructed, and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back-illuminated devices with 13 µm x 13 µm pixels. The camera covers an area of 4.6° x 3.6° on the sky with an active area of 9.6 deg_2. This camera has been installed at the prime focus of the telescope and commissioned, and scientific-quality observations on the Palomar-QUEST Variability Sky Survey were started in 2003 September. The design considerations, construction features, and performance parameters of this camera are described in this paper

    E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-β

    Get PDF
    OBJECTIVE--Increased deposition of extracellular matrix (ECM) within the kidney is driven by profibrotic mediators including transforming growth factor-[beta] (TGF-[beta]) and connective tissue growth factor (CTGF). We investigated whether some of their effects may be mediated through changes in expression of certain microRNAs (miRNAs). RESEARCH DESIGN AND METHODS--Proximal tubular cells, primary rat mesangial cells, and human podocytes were analyzed for changes in the expression of key genes, ECM proteins, and miRNA after exposure to TGF-[beta] (1-10 ng/[micro]l). Tubular cells were also infected with CTGF-adenovirus. Kidneys from diabetic apoE mice were also analyzed for changes in gene expression and miRNA levels. RESULTS--TGF-[beta] treatment was associated with morphologic and phenotypic changes typical of epithelial-mesenchymal transition (EMT) including increased fibrogenesis in all renal cell types and decreased E-cadherin expression in tubular cells. TGF-[beta] treatment also modulated the expression of certain miRNAs, including decreased expression of miR-192/215 in tubular cells, mesangial cells, which are also decreased in diabetic kidney. Ectopic expression of miR-192/215 increased E-cadherin levels via repressed translation of ZEB2 mRNA, in the presence and absence of TGF-[beta], as demonstrated by a ZEB2 3'-untranslated region luciferase reporter assay. However, ectopic expression of miR-192/215 did not affect the expression of matrix proteins or their induction by TGF-[beta]. In contrast, CTGF increased miR-192/215 levels, causing a decrease in ZEB2, and consequently increased E-cadherin mRNA. CONCLUSIONS--These data demonstrate the linking role of miRNA-192/215 and ZEB2 in TGF-[beta]/CTGF-mediated changes in E-cadherin expression. These changes appear to occur independently of augmentation of matrix protein synthesis, suggesting that a multistep EMT program is not necessary for fibrogenesis to occur.Bo Wang, Michal Herman-Edelstein, Philip Koh, Wendy Burns, Karin Jandeleit-Dahm, Anna Watson, Moin Saleem, Gregory J. Goodall, Stephen M. Twigg, Mark E. Cooper and Phillip Kantharidi

    Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions

    Get PDF
    Background: Due to the chronic disease burden on society, there is a need for preventive public health interventions to stimulate society towards a healthier lifestyle. To deal with the complex variability between individual lifestyles and settings, collaborating with end-users to develop interventions tailored to their unique circumstances has been suggested as a potential way to improve effectiveness and adherence. Co-creation of public health interventions using participatory methodologies has shown promise but lacks a framework to make this process systematic. The aim of this paper was to identify and set key principles and recommendations for systematically applying participatory methodologies to co-create and evaluate public health interventions. Methods: These principles and recommendations were derived using an iterative reflection process, combining key learning from published literature in addition to critical reflection on three case studies conducted by research groups in three European institutions, all of whom have expertise in co-creating public health interventions using different participatory methodologies. Results: Key principles and recommendations for using participatory methodologies in public health intervention co-creation are presented for the stages of: Planning (framing the aim of the study and identifying the appropriate sampling strategy); Conducting (defining the procedure, in addition to manifesting ownership); Evaluating (the process and the effectiveness) and Reporting (providing guidelines to report the findings). Three scaling models are proposed to demonstrate how to scale locally developed interventions to a population level. Conclusions: These recommendations aim to facilitate public health intervention co-creation and evaluation utilising participatory methodologies by ensuring the process is systematic and reproducible

    Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches

    Full text link
    The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of 238^{238}Ue_{e}~<<1.6~mBq/kg, 238^{238}Ul_{l}~<<0.09~mBq/kg, 232^{232}The_{e}~=0.28±0.03=0.28\pm 0.03~mBq/kg, 232^{232}Thl_{l}~=0.25±0.02=0.25\pm 0.02~mBq/kg, 40^{40}K~<<0.54~mBq/kg, and 60^{60}Co~<<0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of 0.160±0.0010.160\pm0.001(stat)±0.030\pm0.030(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle Physic

    Integrating plant physiology into simulation of fire behavior and effects

    Get PDF
    Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future

    miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases

    Get PDF
    BACKGROUND: The development of metastases involves the dissociation of cells from the primary tumor to penetrate the basement membrane, invade and then exit the vasculature to seed, and colonize distant tissues. The last step, establishment of macroscopic tumors at distant sites, is the least well understood. Four isogenic mouse breast cancer cell lines (67NR, 168FARN, 4TO7, and 4T1) that differ in their ability to metastasize when implanted into the mammary fat pad are used to model the steps of metastasis. Only 4T1 forms macroscopic lung and liver metastases. Because some miRNAs are dysregulated in cancer and affect cellular transformation, tumor formation, and metastasis, we examined whether changes in miRNA expression might explain the differences in metastasis of these cells. METHODOLOGY/PRINCIPAL FINDINGS: miRNA expression was analyzed by miRNA microarray and quantitative RT-PCR in isogenic mouse breast cancer cells with distinct metastatic capabilities. 4T1 cells that form macroscopic metastases had elevated expression of miR-200 family miRNAs compared to related cells that invade distant tissues, but are unable to colonize. Moreover, over-expressing miR-200 in 4TO7 cells enabled them to metastasize to lung and liver. These findings are surprising since the miR-200 family was previously shown to promote epithelial characteristics by inhibiting the transcriptional repressor Zeb2 and thereby enhancing E-cadherin expression. We confirmed these findings in these cells. The most metastatic 4T1 cells acquired epithelial properties (high expression of E-cadherin and cytokeratin-18) compared to the less metastatic cells. CONCLUSIONS/SIGNIFICANCE: Expression of miR-200, which promotes a mesenchymal to epithelial cell transition (MET) by inhibiting Zeb2 expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell lines. These results suggest that for some tumors, tumor colonization at metastatic sites might be enhanced by MET. Therefore the epithelial nature of a tumor does not predict metastatic outcome
    corecore