237 research outputs found

    Low-Enriched Uranium Nuclear Thermal Propulsion Systems

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. For example, using NTP for human Mars missions can provide faster transit and/or round trip times for crew; larger mission payloads; off nominal mission opportunities (including wider injection windows); and crew mission abort options not available from other architectures. The use of NTP can also reduce required earth-to-orbit launches, reducing cost and improving ground logistics. In addition to enabling robust human Mars mission architectures, NTP can be used on exploration missions throughout the solar system. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics

    Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics

    Parenting and the decline of physical activity from age 9 to 15

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a rapid decline in moderate-to-vigorous physical activity (MVPA) during middle childhood and adolescence. Information on the environmental factors implicated in this decline is limited. This study focuses on family factors associated with the rate of decline in objectively measured physical activity during middle childhood and adolescence.</p> <p>Methods</p> <p>Longitudinal analysis of 801 participants from 10 US sites in the NICHD Study of Early Child Care and Youth Development whose data included accelerometer-determined levels of moderate-to-vigorous physical activity (MVPA) between ages 9 and 15 years, as well as family process, BMI and demographic information. The sample included an even split of boys (49%) and girls (51%), was predominantly white (77%), and contained about 26% low income and 19% single parent families. The outcome measure was mean MVPA. It was based on 4 to 7 days of monitored physical activity.</p> <p>Results</p> <p>Boys with lower parental monitoring scores and more days of parental encouragement had significantly more minutes of MVPA at age 9 years. The effect of parental monitoring, however, was moderated by early puberty. High parental monitoring was associated with decreased activity levels for boys experiencing later puberty and increased activity for boy experiencing early puberty. Minutes of MVPA for boys living in the Midwest decreased at significantly faster rates than boys living in any other region; and boys in the South declined faster than boys in the West. Girls in the Midwest and South declined faster than girls in the West and Northeast. Among girls, more days of parental exercise and transportation to activities were associated with more MVPA per day at age 9. However, more parental transportation to activities and less monitoring was associated with faster linear declines in daughters' MVPA between the ages of 9 and 15 years. For girls who experienced puberty early, parental encouragement was associated with more MVPA.</p> <p>Conclusions</p> <p>Parenting processes, such as monitoring and encouragement, as well as the parents' own level of physical activity, showed significant, but small, gender-specific associations with MVPA levels at age nine and the linear rate of decline in MVPA between ages 9 and 15.</p

    Safe, Affordable, Nuclear Thermal Propulsion Systems

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP)

    Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP)

    Nuclear Cryogenic Propulsion Stage

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP

    NASA's Nuclear Thermal Propulsion Project

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP)

    The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    Get PDF
    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems
    • …
    corecore