953 research outputs found
Lifeworld Analysis
We argue that the analysis of agent/environment interactions should be
extended to include the conventions and invariants maintained by agents
throughout their activity. We refer to this thicker notion of environment as a
lifeworld and present a partial set of formal tools for describing structures
of lifeworlds and the ways in which they computationally simplify activity. As
one specific example, we apply the tools to the analysis of the Toast system
and show how versions of the system with very different control structures in
fact implement a common control structure together with different conventions
for encoding task state in the positions or states of objects in the
environment.Comment: See http://www.jair.org/ for any accompanying file
Drivers of intrapopulation variation in resource use in a generalist predator, the macaroni penguin
Intrapopulation variation in resource use occurs in many populations of generalist predators with important community and evolutionary implications. One of the hypothesised mechanisms for such widespread variation is ecological opportunity, i.e. resource availability determined by intrinsic constraints and extrinsic conditions. We combined tracking data and stable isotope analysis to examine how breeding constraints and prey conditions influenced intrapopulation variation in resource use among macaroni penguins Eudyptes chrysolophus. Isotopic variation was also examined as a function of breeding success, individual traits and individual specialisation. Variation in isotope ratios was greatest across multiple tissue types when birds were able to undertake mid-range foraging trips (i.e. during incubation and pre-moult). This variation was highly consistent between years that spanned a 3-fold difference in local krill Euphausia superba density and was also highly consistent at the individual level between 2 years that had similar krill densities. However, by comparing our results with previous work on the same population, it appeared that a decrease in local prey availability can increase intrapopulation variation in resource use during periods with more restricted foraging ranges (i.e. during brood-guard and crèche). This study highlights the importance of considering ecological interactions that operate on multiple spatio-temporal scales when examining the drivers of resource use in populations of generalist predators
Modelling and mapping how common guillemots balance their energy budgets over a full annual cycle
The ability of individual animals to balance their energy budgets throughout the annual cycle is important for their survival, reproduction and population dynamics. However, the annual cycles of many wild, mobile animals are difficult to observe and our understanding of how individuals balance their energy budgets throughout the year therefore remains poor.
We developed a hierarchical Bayesian state-space model to investigate how key components of animal energy budgets (namely individual energy gain and storage) varied in space and time. Our model used biologger-derived estimates of time-activity budgets, locations and energy expenditure to infer year-round time series of energy income and reserves. The model accounted for seasonality in environmental drivers such as sea surface temperature and daylength, allowing us to identify times and locations of high energy gain.
Our study system was a population of common guillemots Uria aalge breeding at a western North Sea colony. These seabirds manage their energy budgets by adjusting their behaviour and accumulating fat reserves. However, typically during severe weather conditions, birds can experience an energy deficit over a sustained period, leading to starvation and large-scale mortality events.
We show that guillemot energy gain varied in both time and space. Estimates of guillemot body mass varied throughout the annual cycle and birds periodically experienced losses in mass. Mass losses were likely to have either been adaptive, or due to energetic bottlenecks, the latter leading to increased susceptibility to mortality. Guillemots tended to be lighter towards the edge of their spatial distribution.
We describe a framework that combines biologging data, time-activity budget analysis and Bayesian state-space modelling to identify times and locations of high energetic reward or potential energetic bottlenecks in a wild animal population. Our approach can be extended to address ecological and conservation-driven questions that were previously unanswerable due to logistical complexities in collecting data on wild, mobile animals across full annual cycles
Improving assessments of data-limited populations using life-history theory
Funder: Research EnglandFunder: UK Joint Nature Conservation Committee (DEFRA)Predicting how populations may respond to climate change and anthropogenic pressures requires detailed knowledge of demographic traits, such as survival and reproduction. However, the availability of these data varies greatly across space and taxa. Therefore, it is common practice to conduct population assessments by filling in missing values from surrogate species or other populations of the same species. Using these independent surrogate values concurrently with observed data neglects the life‐history trade‐offs that connect the different aspects of a population's demography. Consequently, this approach introduces biases that could ultimately lead to erroneous management decisions. We use a Bayesian hierarchical framework to combine fragmented multi‐population data with established life‐history theory and reconstruct population‐specific demographic data across a substantial part of a species breeding range. We apply our analysis to a long‐lived colonial species, the black‐legged kittiwake Rissa tridactyla, that is classified as globally Vulnerable and is highly threatened by increasing anthropogenic pressures, including offshore renewable energy development. We then use a projection analysis to examine how the reconstructed demographic parameters may improve population assessments, compared to models that combine observed data with independent surrogate values. Demographic parameters reconstructed using a hierarchical framework can be utilised in a range of population modelling approaches. They can also be used as reference estimates to assess whether independent surrogate values are likely to over or underestimate missing demographic parameters. We show that surrogate values from independent sources are often used to fill in missing parameters that have large potential demographic impact, and that resulting biases are driven in unpredictable directions thus precluding assessments from being consistently precautionary. Synthesis and applications. Our study dramatically increases the spatial coverage of population‐specific demographic data for black‐legged kittiwakes. The reconstructed demographic parameters presented can also be used immediately to reduce uncertainty in the consenting process for offshore wind development in the United Kingdom and Ireland. More broadly, we show that the reconstruction approach used here provides a new avenue for improving evidence‐based management and policy action for animal and plant populations with fragmented and error prone demographic data
Sucrose Nonfermenting-Related Kinase Enzyme-Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function.
BACKGROUND: Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate-activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months. METHODS AND RESULTS: We performed additional cardiac functional studies using echocardiography and identified further cardiac functional deficits in Snrk cmcKO mice. Nuclear magnetic resonance-based metabolomics analysis identified key metabolic pathway deficits in SNRK knockdown cardiomyocytes in vitro. Specifically, metabolites involved in lipid metabolism and oxidative phosphorylation are altered, and perturbations in these pathways can result in cardiac function deficits and heart failure. A phosphopeptide-based proteomic screen identified ROCK (Rho-associated kinase) as a putative substrate for SNRK, and mass spec-based fragment analysis confirmed key amino acid residues on ROCK that are phosphorylated by SNRK. Western blot analysis on heart lysates from Snrk cmcKO adult mice and SNRK knockdown cardiomyocytes showed increased ROCK activity. In addition, in vivo inhibition of ROCK partially rescued the in vivo Snrk cmcKO cardiac function deficits. CONCLUSIONS: Collectively, our data suggest that SNRK in cardiomyocytes is responsible for maintaining cardiac metabolic homeostasis, which is mediated in part by ROCK, and alteration of this homeostasis influences cardiac function in the adult heart
Racionalidad y valores éticos en las ciencias y la tecnología
Not available.En este artículo se critica la concepción según la cual la tecnología está libre de valores y que en sí misma no plantea problemas éticos. Frente a ella, se defiende la concepción de acuerdo con la cual las personas y los fines que ellas persiguen intencionalmente forman parte de los sistemas técnicos mismos, al igual que los conocimientos y creencias que se ponen en juego al operar esos sistemas; y, por tanto, la tecnología ya no puede concebirse como indiferente al bien y al mal.
Se analiza, además, el problema que afrontaron los científicos Mario Molina y Sherwood Rowland —Premios Nobel de Química 1995— en sus estudios sobre el agujero de la capa de ozono en la atmósfera terrestre, para ilustrar, por un lado, que es factible actuar de manera responsable en una situación en la que un sistema técnico está produciendo daños, aun cuando no exista evidencia contundente para aceptar una relación causal entre la operación del sistema y los daños en cuestión; y, por otro lado, que hay situaciones en las que los científicos y los tecnólogos tienen responsabilidades morales qua científicos y tecnólogos.
El artículo concluye con una revisión de los deberes para los científicos y tecnólogos, para el Estado y las instituciones de educación e investigación, así como para los ciudadanos en general, con respecto a ciertos problemas éticos que plantea la tecnología
Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice
Short-chain fatty acids (SCFA) are important dietary and microbiome metabolites that can have roles in gut immunity as well as further afield. We previously observed that gut microbiome alteration via antibiotics led to attenuated lung inflammatory responses. The rationale for this study was to identify gut microbiome factors that regulate lung immune homeostasis. We first investigated key factors within mouse colonic lumen filtrates (CLF) which could elicit direct inflammatory effects in vitro. We identified lipopolysaccharide (LPS) and SCFAs as key CLF ingredients whose levels and inflammatory capacity changed after antibiotic exposure in mice. Specifically, the SCFA propionate appeared to be a key regulator of LPS responses in vitro. Elevated propionate: acetate ratios, as seen in CLF after antibiotic exposure, strongly blunted inflammatory responses in vitro. In vivo, exposure of lungs to high dose propionate, to mimic how prior antibiotic exposure changed SCFA levels, resulted in diminished immune containment of Staphylococcus aureus pneumonia. Finally, we discovered an enrichment of propionate-producing gut bacteria in mice with reduced lung inflammation following lung ischemia reperfusion injury in vivo. Overall, our data show that propionate levels can distinctly modulate lung immune responses in vitro and in vivo and that gut microbiome increased production of propionate is associated with reduced lung inflammation
Corrigendum: Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice
Short-chain fatty acids (SCFA) are important dietary and microbiome metabolites that can have roles in gut immunity as well as further afield. We previously observed that gut microbiome alteration via antibiotics led to attenuated lung inflammatory responses. The rationale for this study was to identify gut microbiome factors that regulate lung immune homeostasis. We first investigated key factors within mouse colonic lumen filtrates (CLF) which could elicit direct inflammatory effects in vitro. We identified lipopolysaccharide (LPS) and SCFAs as key CLF ingredients whose levels and inflammatory capacity changed after antibiotic exposure in mice. Specifically, the SCFA propionate appeared to be a key regulator of LPS responses in vitro. Elevated propionate: acetate ratios, as seen in CLF after antibiotic exposure, strongly blunted inflammatory responses in vitro. In vivo, exposure of lungs to high dose propionate, to mimic how prior antibiotic exposure changed SCFA levels, resulted in diminished immune containment of Staphylococcus aureus pneumonia. Finally, we discovered an enrichment of propionate-producing gut bacteria in mice with reduced lung inflammation following lung ischemia reperfusion injury in vivo. Overall, our data show that propionate levels can distinctly modulate lung immune responses in vitro and in vivo and that gut microbiome increased production of propionate is associated with reduced lung inflammation.</p
Novice drivers’ individual trajectories of driver behavior over the first three years of driving
Identifying the changes in driving behavior that underlie the decrease in crash risk over the first few months of driving is key to efforts to reduce injury and fatality risk in novice drivers. This study represented a secondary data analysis of 1148 drivers who participated in the UK Cohort II study. The Driver Behavior Questionnaire was completed at 6 months and 1, 2 and 3 years after licensure. Linear latent growth models indicated significant increases across development in all four dimensions of aberrant driving behavior under scrutiny: aggressive violations, ordinary violations, errors and slips. Unconditional and conditional latent growth class analyses showed that the observed heterogeneity in individual trajectories was explained by the presence of multiple homogeneous groups of drivers, each exhibiting specific trajectories of aberrant driver behavior. Initial levels of aberrant driver behavior were important in identifying sub-groups of drivers. All classes showed positive slopes; there was no evidence of a group of drivers whose aberrant behavior decreased over time that might explain the decrease in crash involvement observed over this period. Male gender and younger age predicted membership of trajectories with higher levels of aberrant behavior. These findings highlight the importance of early intervention for improving road safety. We discuss the implications of our findings for understanding the behavioral underpinnings of the decrease in crash involvement observed in the early months of driving
- …