1,389 research outputs found
The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies
We use cosmological hydrodynamical simulations to investigate the role of
feedback from accreting black holes on the evolution of sizes, compactness,
stellar core density and specific star-formation of massive galaxies with
stellar masses of . We perform two sets of
cosmological zoom-in simulations of 30 halos to z=0: (1) without black holes
and Active Galactic Nucleus (AGN) feedback and (2) with AGN feedback arising
from winds and X-ray radiation. We find that AGN feedback can alter the stellar
density distribution, reduce the core density within the central 1 kpc by 0.3
dex from z=1, and enhance the size growth of massive galaxies. We also find
that galaxies simulated with AGN feedback evolve along similar tracks to those
characterized by observations in specific star formation versus compactness. We
confirm that AGN feedback plays an important role in transforming galaxies from
blue compact galaxies into red extended galaxies in two ways: (1) it
effectively quenches the star formation, transforming blue compact galaxies
into compact quiescent galaxies and (2) it also removes and prevents new
accretion of cold gas, shutting down in-situ star formation and causing
subsequent mergers to be gas-poor or mixed. Gas poor minor mergers then build
up an extended stellar envelope. AGN feedback also puffs up the central region
through the fast AGN driven winds as well as the slow expulsion of gas while
the black hole is quiescent. Without AGN feedback, large amounts of gas
accumulate in the central region, triggering star formation and leading to
overly massive blue galaxies with dense stellar cores.Comment: 13 pages, 7 figures, Accepted for publication in Ap
Perturbations and Critical Behavior in the Self-Similar Gravitational Collapse of a Massless Scalar Field
This paper studies the perturbations of the continuously self-similar
critical solution of the gravitational collapse of a massless scalar field
(Roberts solution). The perturbation equations are derived and solved exactly.
The perturbation spectrum is found to be not discrete, but occupying continuous
region of the complex plane. The renormalization group calculation gives the
value of the mass-scaling exponent equal to 1.Comment: 12 pages, RevTeX 3.1, 1 figur
Boosting jet power in black hole spacetimes
The extraction of rotational energy from a spinning black hole via the
Blandford-Znajek mechanism has long been understood as an important component
in models to explain energetic jets from compact astrophysical sources. Here we
show more generally that the kinetic energy of the black hole, both rotational
and translational, can be tapped, thereby producing even more luminous jets
powered by the interaction of the black hole with its surrounding plasma. We
study the resulting Poynting jet that arises from single boosted black holes
and binary black hole systems. In the latter case, we find that increasing the
orbital angular momenta of the system and/or the spins of the individual black
holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure
Self-Similar Collapse of Scalar Field in Higher Dimensions
This paper constructs continuously self-similar solution of a spherically
symmetric gravitational collapse of a scalar field in n dimensions. The
qualitative behavior of these solutions is explained, and closed-form answers
are provided where possible. Equivalence of scalar field couplings is used to
show a way to generalize minimally coupled scalar field solutions to the model
with general coupling.Comment: RevTex 3.1, 15 pages, 3 figures; references adde
Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation
Rab GTPases control membrane identity, fusion, and transport by interaction with effector proteins. Effectors that influence the activation/inactivation cycle of their own or other Rabs contribute to the timely conversion of Rab identities. Rab5 and its effector Rabaptin5 are generally considered the prime example for a positive feedback loop in which Rab5·GTP recruits Rabaptin5 complexed to Rabex5, the GDP/GTP exchange factor of Rab5, to early endosomes, thus maintaining the membrane's Rab5 identity. By deletion analysis, we found membrane recruitment of Rabaptin5 to require binding to Rab4 and Rabex5, but not Rab5. Deletion of either one of two Rab5 binding domains or silencing of Rab5 expression did not affect Rabaptin5 recruitment, but produced giant endosomes with early and late endosomal characteristics. The results contradict feedback activation of Rab5 and instead indicate that Rabaptin5 is recruited by Rabex5 recognizing ubiquitinated cargo and by Rab4 to activate Rab5 in a feed-forward manner
Rotating magnetic solution in three dimensional Einstein gravity
We obtain the magnetic counterpart of the BTZ solution, i.e., the rotating
spacetime of a point source generating a magnetic field in three dimensional
Einstein gravity with a negative cosmological constant. The static
(non-rotating) magnetic solution was found by Clement, by Hirschmann and Welch
and by Cataldo and Salgado. This paper is an extension of their work in order
to include (i) angular momentum, (ii) the definition of conserved quantities
(this is possible since spacetime is asymptotically anti-de Sitter), (iii)
upper bounds for the conserved quantities themselves, and (iv) a new
interpretation for the magnetic field source. We show that both the static and
rotating magnetic solutions have negative mass and that there is an upper bound
for the intensity of the magnetic field source and for the value of the angular
momentum. The magnetic field source can be interpreted not as a vortex but as
being composed by a system of two symmetric and superposed electric charges,
one of the electric charges is at rest and the other is spinning. The rotating
magnetic solution reduces to the rotating uncharged BTZ solution when the
magnetic field source vanishes.Comment: Latex (uses JHEP3.cls), 12 pages. Published versio
Isentropic Melting Processes in the Mantle
Batch melting of ascending mantle can be approximated as an isentropic
process, since on the time scale of melting heat flow into or out of source
regions will typically be negligible and the process is slow enough to be close to
reversible. Similarly, fractional fusion can be idealized as a series of
incremental isentropic melting steps, although the entropy of the residue
decreases in each step. Although actual melting processes (e.g., involving melt
migration, diffusion, and convective boundary layers) must deviate to some
extent from idealized isentropic conditions, modeling of mantle processes under
the assumption of constant entropy is tractable from a thermodynamic
perspective and leads to a number of insights. Here we present models of the
productivity of isentropic pressure-release melting, consider the effect of solid-solid
phase transitions on melting, and model deep crystal fractionation in
ascending melts of the mantle
COVID-19 coronavirus: recommended personal protective equipment for the orthopaedic and trauma surgeon
PURPOSE: With the COVID-19 crisis, recommendations for personal protective equipment (PPE) are necessary for protection in orthopaedics and traumatology. The primary purpose of this study is to review and present current evidence and recommendations for personal protective equipment and safety recommendations for orthopaedic surgeons and trauma surgeons. METHODS: A systematic review of the available literature was performed using the keyword terms âCOVID-19â, âCoronavirusâ, âsurgeonâ, âhealth-care workersâ, âprotectionâ, âmasksâ, âglovesâ, âgownsâ, âhelmetsâ, and âaerosolâ in several combinations. The following databases were assessed: Pubmed, Cochrane Reviews, Google Scholar. Due to the paucity of available data, it was decided to present it in a narrative manner. In addition, participating doctors were asked to provide their guidelines for PPE in their countries (Austria, Luxembourg, Switzerland, Germany, UK) for consideration in the presented practice recommendations. RESULTS: World Health Organization guidance for respiratory aerosol-generating procedures (AGPs) such as intubation in a COVID19 environment was clear and included the use of an FFP3 (filtering face piece level 3) mask and face protection. However, the recommendation for surgical AGPs, such as the use of high-speed power tools in the operating theatre, was not clear until the UK Public Health England (PHE) guidance of 27 March 2020. This guidance included FFP3 masks and face protection, which UK surgeons quickly adopted. The recommended PPE for orthopaedic surgeons, working in a COVID19 environment, should consist of level 4 surgical gowns, face shields or goggles, double gloves, FFP2-3 or N95-99 respirator masks. An alternative to the mask, face shield and goggles is a powered air-purifying respirator, particularly if the surgeons fail the mask fit test or are required to undertake a long procedure. However, there is a high cost and limited availabilty of these devices at present. Currently available surgical helmets and toga systems may not be the solution due to a permeable top for air intake. During the current COVID-19 crisis, it appeared that telemedicine can be considered as an electronic personal protective equipment by reducing the number of physical contacts and risk contamination. CONCLUSION: Orthopaedic and trauma surgery using power tools, pulsatile lavage and electrocautery are surgical aerosol-generating procedures and all body fluids contain virus particles. Raising awareness of these issues will help avoid occupational transmission of COVID-19 to the surgical team by aerosolization of blood or other body fluids and hence adequate PPE should be available and used during orthopaedic surgery. In addition, efforts have to be made to improve the current evidence in this regard
QualitÀtssicherung interdisziplinÀrer Polytraumaversorgung: Möglichkeiten und Grenzen retrospektiver Standarderfassung
Zusammenfassung: Hintergrund: Inwieweit kann die Auswertung standardmĂ€Ăig erhobener Patienten- und Krankenhausdaten einen Behandlungsvergleich mit anderen Erhebungen gestatten? Material und Methoden: Es wurde eine retrospektive Analyse epidemiologischer und klinisch-technischer Parameter aller Mehrfachverletzten [Injury Severity Score (ISS)>15] einer Zentrumsklinik (n=172; Zeitraum: 01.01.1997-31.12.1999) bezĂŒglich der Ablauforganisation und des Outcome (p74Jahre, Hypotension, initial verminderte HĂ€moglobin- und Quick-Werte, verminderte Glasgow Coma Scale (GCS) sowie Anzahl erhaltener Blutkonzentrate. Eine GegenĂŒberstellung der erhobenen Daten mit der zeitgleichen prospektiven Multizenterstudie der Deutschen Gesellschaft fĂŒr Unfallchirurgie (DGU) bestĂ€tigte die Ergebnisse bezĂŒglich des Ablaufs und des Outcome. Schlussfolgerung: Die interdisziplinĂ€re retrospektive Datenauswertung ist unter Fokussierung auf prognoserelevante und routinemĂ€Ăig erhobene Parameter eine praktikable sowie aussagefĂ€hige Alternative zu prospektiven Erfassungen und ermöglicht eine erste qualitative Standortbestimmun
- âŠ