3,238 research outputs found
Double-layer shocks in a magnetized quantum plasma
The formation of small but finite amplitude electrostatic shocks in the
propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external
magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma.
Such shocks are seen to have double-layer (DL) structures composed of the
compressive and accompanying rarefactive slow-wave fronts. Existence of such DL
shocks depends critically on the quantum coupling parameter associated with
the Bohm potential and the positron to electron density ratio . The
profiles may, however, steepen initially and reach a steady state with a number
of solitary waves in front of the shocks. Such novel DL shocks could be a good
candidate for particle acceleration in intense laser-solid density plasma
interaction experiments as well as in compact astrophysical objects, e.g.,
magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E
Experimental evidence of delocalized states in random dimer superlattices
We study the electronic properties of GaAs-AlGaAs superlattices with
intentional correlated disorder by means of photoluminescence and vertical dc
resistance. The results are compared to those obtained in ordered and
uncorrelated disordered superlattices. We report the first experimental
evidence that spatial correlations inhibit localization of states in disordered
low-dimensional systems, as our previous theoretical calculations suggested, in
contrast to the earlier belief that all eigenstates are localized.Comment: 4 pages, 5 figures. Physical Review Letters (in press
Quantum Degenerate Exciton-Polaritons in Thermal Equilibrium
We study the momentum distribution and relaxation dynamics of semiconductor
microcavity polaritons by angle-resolved and time-resolved spectroscopy. Above
a critical pump level, the thermalization time of polaritons at positive
detunings becomes shorter than their lifetime, and the polaritons form a
quantum degenerate Bose-Einstein distribution in thermal equilibrium with the
lattice.Comment: Updated with the published versio
Improving statistical skills through students’ participation in the development of resources
This paper summarizes the evaluation of a project that involved undergraduate mathematics students in the development of teaching and learning resources for statistics modules taught in various departments of a university. This evaluation regards students’ participation in the project and its impact on their learning of statistics, as characterized in terms of statistical reasoning, statistical thinking, and skills for statistical consultancy. The participation of students is evaluated from the viewpoint of communities of practice. The evaluation resulted in a characterization of the benefits of such a project and suggestions for implementations of future projects, and in addition brought to light new theoretical elements both as regards the learning of statistics and as regards communities of practice. In particular, the analysis highlighted contributions of the students involved to resource development practice in the community of university statistics teachers, as well as contributions to students’ learning as a result of participation in this community
Quantum effects in linear and non-linear transport of T-shaped ballistic junction
We report low-temperature transport measurements of three-terminal T-shaped
device patterned from GaAs/AlGaAs heterostructure. We demonstrate the mode
branching and bend resistance effects predicted by numerical modeling for
linear conductance data. We show also that the backscattering at the junction
area depends on the wave function parity. We find evidence that in a non-linear
transport regime the voltage of floating electrode always increases as a
function of push-pull polarization. Such anomalous effect occurs for the
symmetric device, provided the applied voltage is less than the Fermi energy in
equilibrium
Constructing Qubits in Physical Systems
The notion of a qubit is ubiquitous in quantum information processing. In
spite of the simple abstract definition of qubits as two-state quantum systems,
identifying qubits in physical systems is often unexpectedly difficult. There
are an astonishing variety of ways in which qubits can emerge from devices.
What essential features are required for an implementation to properly
instantiate a qubit? We give three typical examples and propose an operational
characterization of qubits based on quantum observables and subsystems.Comment: 16 pages, no figures; IoP LaTeX2e style. Submitted to J. Phys. A:
Math. Ge
Phonon-induced optical superlattice
We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments
Elicitation of Preferences under Ambiguity
This paper is about behaviour under ambiguity ‒ that is, a situation in which probabilities either do not exist or are not known. Our objective is to find the most empirically valid of the increasingly large number of theories attempting to explain such behaviour. We use experimentally-generated data to compare and contrast the theories. The incentivised experimental task we employed was that of allocation: in a series of problems we gave the subjects an amount of money and asked them to allocate the money over three accounts, the payoffs to them being contingent on a ‘state of the world’ with the occurrence of the states being ambiguous. We reproduced ambiguity in the laboratory using a Bingo Blower. We fitted the most popular and apparently empirically valid preference functionals [Subjective Expected Utility (SEU), MaxMin Expected Utility (MEU) and α-MEU], as well as Mean-Variance (MV) and a heuristic rule, Safety First (SF). We found that SEU fits better than MV and SF and only slightly worse than MEU and α-MEU
- …
