388 research outputs found
Biogeochemical and Optical Analysis of Coastal DOM for Satellite Retrieval of Terrigenous DOM in the U.S. Middle Atlantic Bight
Estuaries and coastal ocean waters experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine/estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements (elemental content, molecular analyses), optical properties (absorption) and remote sensing to examine terrestrial DOM contributions into the U.S. Middle Atlantic Bight (MAB). We measured lignin phenol composition, DOC and CDOM absorption within the Chesapeake and Delaware Bay mouths, plumes and adjacent coastal ocean waters to derive empirical relationships between CDOM and biogeochemical measurements for satellite remote sensing application. Lignin ranged from 0.03 to 6.6 ug/L between estuarine and outer shelf waters. Our results demonstrate that satellite-derived CDOM is useful as a tracer of terrigenous DOM in the coastal ocea
Lignin biomarkers as tracers of mercury sources in lakes water column
This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
Controls on the composition and lability of dissolved organic matter in Siberia's Kolyma River basin
High-latitude northern rivers export globally significant quantities of dissolved organic carbon (DOC) to the Arctic Ocean. Climate change, and its associated impacts on hydrology and potential mobilization of ancient organic matter from permafrost, is likely to modify the flux, composition, and thus biogeochemical cycling and fate of exported DOC in the Arctic. This study examined DOC concentration and the composition of dissolved organic matter (DOM) across the hydrograph in Siberia's Kolyma River, with a particular focus on the spring freshet period when the majority of the annual DOC load is exported. The composition of DOM within the Kolyma basin was characterized using absorbance-derived measurements (absorbance coefficienta330, specific UV absorbance (SUVA254), and spectral slope ratio SR) and fluorescence spectroscopy (fluorescence index and excitation-emission matrices (EEMs)), including parallel factor analyses of EEMs. Increased surface runoff during the spring freshet led to DOM optical properties indicative of terrestrial soil inputs with high humic-like fluorescence, SUVA254, and low SRand fluorescence index (FI). Under-ice waters, in contrast, displayed opposing trends in optical properties representing less aromatic, lower molecular weight DOM. We demonstrate that substantial losses of DOC can occur via biological (∼30% over 28 days) and photochemical pathways (>29% over 14 days), particularly in samples collected during the spring freshet. The emerging view is therefore that of a more dynamic and labile carbon pool than previously thought, where DOM composition plays a fundamental role in controlling the fate and removal of DOC at a pan-Arctic scale
Recommended from our members
Reconstructing institutional complexity in practice: A relational model of institutional work and complexity
This article develops a relational model of institutional work and complexity. This model advances current institutional debates on institutional complexity and institutional work in three ways. First, it provides a relational and dynamic perspective on institutional complexity by explaining how constellations of logics - and their degree of internal contradiction - are constructed rather than given. Second, it refines our current understanding of agency, intentionality and effort in institutional work by demonstrating how different dimensions of agency interact dynamically in the institutional work of reconstructing institutional complexity. Third, it situates institutional work in the everyday practice of individuals coping with the institutional complexities of their work. In doing so, it reconnects the construction of institutionally complex settings to the actions and interactions of the individuals who inhabit them
The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 119 (2014): 687–702, doi:10.1002/2013JG002442.Dissolved organic carbon (DOC) and inorganic carbon (DIC, pCO2), lignin biomarkers, and theoptical properties of dissolved organic matter (DOM) were measured in a gradient of streams and rivers within the Congo Basin, with the aim of examining how vegetation cover and hydrology influences the composition and concentration of fluvial carbon (C). Three sampling campaigns (February 2010, November 2010, and August 2011) spanning 56 sites are compared by subbasin watershed land cover type (savannah, tropical forest, and swamp) and hydrologic regime (high, intermediate, and low). Land cover properties predominately controlled the amount and quality of DOC, chromophoric DOM (CDOM) and lignin phenol concentrations (∑8) exported in streams and rivers throughout the Congo Basin. Higher DIC concentrations and changing DOM composition (lower molecular weight, less aromatic C) during periods of low hydrologic flow indicated shifting rapid overland supply pathways in wet conditions to deeper groundwater inputs during drier periods. Lower DOC concentrations in forest and swamp subbasins were apparent with increasing catchment area, indicating enhanced DOC loss with extended water residence time. Surface water pCO2 in savannah and tropical forest catchments ranged between 2,600 and 11,922 µatm, with swamp regions exhibiting extremely high pCO2 (10,598–15,802 µatm), highlighting their potential as significant pathways for water-air efflux. Our data suggest that the quantity and quality of DOM exported to streams and rivers are largely driven by terrestrial ecosystem structure and that anthropogenic land use or climate change may impact fluvial C composition and reactivity, with ramifications for regional C budgets and future climate scenarios.This work was
supported by the National Science
Foundation as part of the ETBC
Collaborative Research: Controls on the
Flux, Age, and Composition of Terrestrial
Organic Carbon Exported by Rivers to the
Ocean (0851101 and 0851015).2014-10-3
Risk factors for delayed presentation and referral of symptomatic cancer: Evidence for common cancers
Background:It has been suggested that the known poorer survival from cancer in the United Kingdom, compared with other European countries, can be attributed to more advanced cancer stage at presentation. There is, therefore, a need to understand the diagnostic process, and to ascertain the risk factors for increased time to presentation.Methods:We report the results from two worldwide systematic reviews of the literature on patient-mediated and practitioner-mediated delays, identifying the factors that may influence these.Results:Across cancer sites, non-recognition of symptom seriousness is the main patient-mediated factor resulting in increased time to presentation. There is strong evidence of an association between older age and patient delay for breast cancer, between lower socio-economic status and delay for upper gastrointestinal and urological cancers and between lower education level and delay for breast and colorectal cancers. Fear of cancer is a contributor to delayed presentation, while sanctioning of help seeking by others can be a powerful mediator of reduced time to presentation. For practitioner delay, ‘misdiagnosis’ occurring either through treating patients symptomatically or relating symptoms to a health problem other than cancer, was an important theme across cancer sites. For some cancers, this could also be linked to inadequate patient examination, use of inappropriate tests or failing to follow-up negative or inconclusive test results.Conclusion:Having sought help for potential cancer symptoms, it is therefore important that practitioners recognise these symptoms, and examine, investigate and refer appropriately. © 2009 Cancer Research UK All rights reserved
Academic freedom: in justification of a universal ideal
This paper examines the justification for, and benefits of, academic freedom to academics, students, universities and the world at large. The paper surveys the development of the concept of academic freedom within Europe, more especially the impact of the reforms at the University of Berlin instigated by Wilhelm von Humboldt. Following from this, the paper examines the reasons why the various facets of academic freedom are important and why the principle should continue to be supported
National Government Responses to Marine Stewardship Council (MSC) Fisheries Certification: Insights from Atlantic Canada
Over the last decade, the proliferation of social and environmental certification programmes has attracted the attention of a growing number of political scientists interested in new forms of ‘private’ transnational governance. However, we still lack analyses on the nature and extent of different state responses to and involvement in new private transnational governance arrangements in particular sectors and in different jurisdictions. This paper advances our understanding of the interactions between nation-state and private transnational modes of governance by analysing the role of national government authorities in Marine Stewardship Council (MSC) fisheries certification in Atlantic Canada, known more for the disastrous collapse of Northern cod stocks than good marine stewardship. Focusing on the 2008 certification of Northern shrimp (Pandalus borealis) fisheries off the Province of Newfoundland and Labrador, the analysis finds that the implementation and maintenance of MSC certification in this case depended on significant support from government authorities. The delicate legitimacy of both authorities face a period of uncertainty in this case since some certified shrimp stocks appear to be in decline and perhaps also migrating northward off Newfoundland and Labrador
- …